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ABSTRACT OF DISSERTATION 
 
 
 
 

DISTAL RADIOULNAR JOINT BIOMECHANICS AND FOREARM MUSCLE ACTIVITY 
 

Optimal management of fractures, post-traumatic arthritis and instability of the 
distal radioulnar joint (DRUJ) requires an understanding of the forces existing across this 
joint as a function of the activities of daily living.  However, such knowledge is currently 
incomplete. The goal of this research was to quantify the loads that occur at the DRUJ 
during forearm rotation and to determine the effect that individual muscles have on 
those loads.   

Human and cadaver studies were used to analyze the shear (A-P), transverse (M-
L) and resultant forces at the DRUJ and to determine the role that 15 individual muscles 
had on those forces.  Data for scaling the muscles forces came from EMG analysis 
measuring muscle activity at nine positions of forearm rotation in volunteers during 
isometric pronation and supination.  Muscle orientations were determined from the 
marked muscle origin and insertion locations of nine cadaveric arms at various stages of 
forearm rotation.  The roles that individual muscles played in DRUJ loading were 
analyzed by removing the muscle of interest from the analysis and comparing the 
results.   

The EMG portion of this study found that the pronator quadratus, pronator 
teres, brachioradialis, flexor carpi radialis and palmaris longus contribute significantly to 
forearm pronation.  The supinator, biceps brachii, and abductor pollicis longus were 
found to contribute significantly to supination.   

The results of the DRUJ analysis affirm that large transverse forces pass from the 
radius to the ulnar head at all positions of forearm rotation during pronation and 
supination (57.5N-181.4N).  Shear forces exist at the DRUJ that act to pull the radius 
away from the ulna in the AP direction and are large enough to merit consideration 
when examining potential treatment options (7.9N-99.5N).   

Individual muscle analysis found that the extensor carpi radialis brevis, extensor 
pollicis longus, extensor carpi ulnaris, extensor indicis and palmaris longus had minimal 
effect on DRUJ loading.  Other than the primary forearm rotators (pronator quadratus, 
pronator teres, supinator, biceps brachii), the muscles that exhibited the largest 



 
 

influence on DRUJ loading were the abductor pollicis longus, brachialis, brachioradialis, 
extensor carpi ulnaris, flexor carpi radialis, and flexor carpi ulnaris.   
 

KEYWORDS: distal radioulnar joint, electromyography, isometric muscle contraction, 
joint reaction forces, forearm biomechanics 
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CHAPTER 1: BACKGROUND 

 

1.1 The Distal Radioulnar Joint 

 

1.1.1 Anatomy and Function 

The forearm consists of two long bones, the radius and ulna.  The radius and ulna 

rotate about each other to create forearm rotation.   The radius and ulna meet at the 

elbow and wrist, creating the proximal radioulnar joint (PRUJ) and the distal radioulnar 

joint (DRUJ), respectively (Fig. 1.1).   The DRUJ is considered to be a synovial pivot joint 

where the shallow sigmoid notch of the ulnar aspect of the distal radius articulates on 

the circular head of the ulna (163).  In the neutral forearm position, the radio-carpal unit 

rests on top of the ulna seat with gravity pulling the head and its load toward the 

ground (111, 154).  During pronation and supination, the radius rotates about the ulna 

and has a reported rotational range between 150° and 190° (3, 46, 110, 154).  The 

average rotation angle of the radius at maximum pronation is 66.1° and at maximum 

supination is 75° (142).  In addition to the rotational motion, there is also a translational 

motion present in the DRUJ (97).  The ulnar head translates palmarly with supination 

about the ulna and dorsally with pronation (5, 151, 152). The ulna also rotates about its 

center of gravity between a range of 3° and 6° during forearm rotation (142).  As the 

forearm rotates from supination to pronation the ulnar head shifts distally within the 

sigmoid notch (55, 152).  The relative translation of the radius and ulna can change as 

much as 2mm during forearm rotation (112).  The axis of rotation of the forearm is 

typically considered to be the longitudinal axis formed from a straight line connecting 

the radial head at the elbow and the fovea of the distal ulna at the wrist (186).  

However, others report that the center of rotation changes with different forearm arcs 

(110).   

The distal ulna has an articular surface covering approximately two thirds of its 

circumference (50).  Articular cartilage covers a 90° to 135° arc of the ulnar head, while 

the arc of the sigmoid notch of the radius is only 47° to 80° (2).  The structural presence 
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and health of the articular surface of the ulnar seat are critical in providing a painless 

mechanical fulcrum for all radioulnar load bearing activity (111).  The concave radius of 

curvature of the radial sigmoid notch is approximately 50% larger than the ulnar head 

with which it articulates (2, 3, 5, 191).  Joint surface contact ranges from 60% in neutral 

position to <10% at full pronation and supination (81).  The incongruity of the articular 

surfaces creates a geometrically nonconstrained articulation at the DRUJ (111), thus 

making it susceptible to translational dorsal and palmer instability.  

Instability is defined as an abnormal path of articular contact occurring during or 

at the end of the arc of motion attempted (26).  Because of the small surface contact 

area at the DRUJ, osseous anatomy provides minimal stability.   Therefore, a variety of 

soft tissue structures (Figs. 1.2 and 1.3) is thought to contribute to DRUJ stability. There 

is controversy as to which components provide overall DRUJ stability and how much 

they provide (1-4, 26, 39, 50, 54, 71, 81, 82, 104, 107, 108, 111, 120, 136, 183, 191, 194, 

201, 205, 210).  Soft tissue stabilization of the DRUJ is obtained through extrinsic and 

intrinsic structures (111). Extrinsic stabilizers reside outside of the joint capsule and 

intrinsic structures within the joint capsule (111).  Extrinsic factors that are thought to 

contribute include muscles such as the pronator quadratus as well as the flexor and 

extensor carpi ulnaris (81, 94, 100, 104, 108, 111, 164, 183).  The interosseous 

membrane (IOM), which connects the radius and ulna, is also thought to play an 

extrinsic role in DRUJ stabilization (23, 60, 83, 92, 107, 108, 111, 130, 136, 157, 159, 183, 

201, 204, 205, 207).  However, the rotational stability provided by these extrinsic 

stabilizers is considered to be of minor consequence compared to that of the intrinsic 

stabilizers (111).  The intrinsic stabilizers collectively blend together to form the 

triangular fibrocartilage complex (TFCC) (81, 107, 111, 126, 136, 145, 153).  The TFCC is 

thought to include the triangular fibrocartilage disc, the dorsal and palmar radioulnar 

ligaments, the meniscus homolog and the sheath of the extensor carpi ulnaris (50).  The 

role of individual components of the TFCC to DRUJ stability such as the radioulnar 

ligaments (3, 4, 26, 51, 81, 86, 108, 111, 175, 183, 189, 205) as well as the contribution 

of the joint capsule itself (111, 113, 201, 205, 206) have also been investigated. 
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Figure 1.1.  Osseous Anatomy of the Forearm 
 

The figure on the left shows the osseous anatomy of the anterior forearm, and the 
figure on the right shows the osseous anatomy of the posterior forearm. 
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Figure 1.2.  Muscular Anatomy of the Forearm 
 

The figure on the left shows the superficial muscles of the forearm.  The figure in the 
middle shows the deep muscles of the anterior forearm.  The figure on the right shows 
the deep muscles of the posterior forearm.  
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Figure 1.3. Cross-sectional Anatomy of the Forearm 

 

1.1.2 Dysfunction of the DRUJ 

Trauma, degenerative diseases, and pathoanatomy of the distal forearm can 

result in dysfunctional DRUJ biomechanics.  Conditions such as arthritis, osteoarthritis, 

ulnocarpal impingement syndrome, chronic instability, malunion, and posttraumatic 

disorders (50) can cause DRUJ dysfunction that must be addressed.  The primary 

conditions resulting from these causes are triangular fibrocartilage wear and 

perforation, ulnar variation with DRUJ incongruity, ulnar styloid nonunion and general 

joint instability.  Acute injury to the DRUJ is most frequently a result of a fall on the 

outstretched hand, forced hyperpronation or forced hypersupination.  Instability 

typically follows because osseous damage, ligamentous damage or both occur (81).  

Fracture and instability of the distal radioulnar joint commonly result in osteoarthritis.   

 

1.1.2.1 DRUJ Dysfunction Incidence and Cost 

Distal radial fractures account for approximately 10-15% of all fractures (30, 123) 

and approximately 72% of all forearm fractures (6).  Approximately 23-67 of every 

10,000 people will experience a distal radius fracture each year (52).  The aging baby 



6 
 

boomer population and increasing incidence of osteoporosis-related bone loss suggest 

that this incidence will increase by more than 38% by 2020 (122).  A study of Medicare 

costs associated with distal forearm fracture treatment from diagnosis through six 

month follow-up found the average medical costs to be $7788 per incident (109).  

According to the US Census Bureau, the 2010 United States population was 

308,745,538.  Therefore, based on forearm fracture incidence data (52), the medical 

treatment alone costs Americans between $5.5 billion and $16.1 billion annually.  By 

2020, these costs will be between $7.6 billion and $22.2 billion because of the aging 

baby boomer population.   

 

1.1.2.2 DRUJ Fractures 

In a review of forearm injuries, two or more sites of injury are routine and the 

DRUJ is affected in 60% of cases (73). There are different types of fractures that occur at 

the distal forearm.  Distal radius fractures are sometimes called Colles’ fractures 

because they were first described by Colles in 1814 (41).  A Colles’ fracture is 

characterized by volar tilt, radial inclination and shortening of the distal radius (163).  

97% of Colles’ fractures result in some permanent disability.  The impairment in passive 

forearm motion is noted more frequently in supination (37%) than in pronation (28%) 

(12).  The complication rate of Colles’ fractures has been noted to approach 23% (43).  A 

diaphyseal fracture occurring at the junction of the mid and distal thirds of the radius is 

called a Galeazzi (162), Piedmont (93) or Darrach-Hughston-Milch (199) fracture and is 

associated with dislocation of the DRUJ (163).  Such a fracture is thought to result in 

hyperpronation under axial load (132, 136, 199).  A Smith’s fracture is characterized by 

dorsal tilt, radial inclination and shortening of the distal radius (163).  Essex-Lopresti 

fracture dislocations are uncommon and involve a radial head fracture associated with 

acute disruption of the DRUJ joint secondary to proximal migration of the radial shaft.  A 

fall on the outstretched hand producing a longitudinal compression force is the most 

common mechanism of injury (163). 
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1.1.2.3 DRUJ Disease 

Joint diseases, specifically rheumatoid arthritis and osteoarthritis, exert 

significant adverse effects on the DRUJ.  The DRUJ is prone to joint disease because of 

its inherent instability.  The problem stems from the tendency of the sigmoid notch and 

ulnar head to heal in an incongruent fashion.    Because only approximately 20% of DRUJ 

stability is attributed to articular contact (183), synovial-lined ligamentous stabilizers are 

needed for stabilization, making it vulnerable to rheumatoid disease (54, 74, 158).  Of 

the people that have rheumatoid arthritis, as many as 95% exhibit symptoms in one of 

the wrist’s three major articulations (74, 185).  The highest incidence occurs in the DRUJ 

(119).  Rheumatoid arthritis in the DRUJ can be debilitating because it can lead to dorsal 

dislocation of the ulnar head resulting in pain, decreased forearm rotation, and rupture 

of the extensor tendons.  Patients with all forms of arthritis of the DRUJ may have 

limited forearm rotation, pain with active motion, and limited grip strength (146). 

 

1.1.3 Surgical Treatment of DRUJ Dysfunction 

Some current surgical techniques used to alleviate DRUJ dysfunction include 

interosseous wiring (150), ulnar shortening (173),  and  various forms of ulnar head or 

shaft resection with or without interposition (14, 25, 32, 47, 70, 102, 164, 165, 168, 208, 

209).  Resection procedures produce at best fair results (21, 62, 67, 75, 208) and have 

been associated with significant complications which include radioulnar impingement 

and distal ulna instability (95).  Ulnar impingement is caused by a shortened ulna 

impinging on the distal radius and causing a painful, disabling pseudorarthrosis (19).  

Recent biomechanical studies have shown that even with a longitudinally directed force, 

some pressure goes across the radioulnar articulation (157) and that maintaining the 

distal ulna is biomechanically preferable to resection (167).   

 

1.1.3.1 DRUJ Prostheses 

There is an increasing number of prosthesis options available for treatment of 

DRUJ dysfunction.  Most of these either fall under the ulnar head replacement category 
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(25, 57, 63, 89, 90, 114, 170, 174, 184, 196, 214) or the total joint arthroplasty category 

(150, 161, 171, 172, 176).  Total ulnar head replacements are used in cases of DRUJ 

posttraumatic osteoarthritis  and in cases of ulnar disability after resection of the distal 

ulna (176).  The primary total ulnar head replacements on the market are the Swanson 

silicone ulna head (184), the Herbert-Martin ceramic head prosthesis (89, 90), and the 

Avanta metal head prosthesis (179).  Partial ulnar head replacements (63, 114) are used 

in cases of DRUJ incongruency (176).  The long term success of partial and total ulnar 

head replacements have had mixed results (14, 25, 32, 57, 62, 67, 70, 75, 76, 131, 133, 

165-167, 170, 179, 180, 196, 202, 214).  Some of the complications that can occur with 

ulnar head prostheses include recurrent instability, fracture of the implant, continued 

pain, loss of motion, as well as the progressive erosion of the prosthesis head on the 

sigmoid notch (176, 179).   

Complete DRUJ replacement may be indicated if there is a lack of soft tissue 

stabilizers to stabilize an ulna head prosthesis (176).  Development of total DRUJ 

prostheses is progressing as biomechanical knowledge of the DRUJ is improving.  Total 

prostheses currently on the market include the Alkmaar prosthesis (161), the Aptis DRUJ 

prosthesis (117, 171, 172), and the Schuurman prosthesis (176).  The latter two are 

made specifically for the DRUJ.  The Alkmaar prosthesis is part of a modular wrist system 

and is fixed with screws and bony ingrowth (176).  At twenty-month follow-up, twenty-

two of thirty-two patients implanted with the Alkmar device reported increased wrist 

movement, increased grip strength, and reduced pain (161).  The Aptis prosthesis 

consists of four parts and is fixed by means of five screws and bony integration (171, 

176).  Aptis has received reports of improved grip strength and range of motion in 

thirty-one patients with an average follow-up of 5.9 years (117). The Schuurman 

prosthesis consists of two components and uses a hydroxyapatite coating (176).  There 

were three development iterations of the Schuurman device.  The first had no failures in 

four patients, the second failed in all five patients, and the third failed in two out of ten 

patients.  Of the twelve that succeeded, there was a significant improvement in grip 

strength and range of pronation. 
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1.1.3.2 DRUJ Analysis and Reduction of Treatment Complications  

Suboptimal methods of treating distal radius injuries or diseases, manifested 

through instability, joint incongruency, and ulnocarpal abutment (66) are the most 

common cause of residual wrist disability and loss of productivity or independence.  

Understanding the forces that the ulnar head is exposed to at the distal radioulnar joint 

is essential for determining efficacy of current treatment options.  This information is 

also vital for the development of new treatment options which would maintain 

anatomical function as well as the load bearing capability of the DRUJ.  Because of the 

growing development of prosthetic joint replacements at the DRUJ, obtaining a clear 

understanding of DRUJ biomechanics has never been more important. 

 

1.2 Problem Statement and Purpose 

 

1.2.1 Problem Statement 

Instability and dysfunction at the DRUJ are significant problems both in terms of 

frequency and the impact on quality of life.  A variety of treatment methods producing 

at best fair results exists for the treatment of these issues.  Treatment methods are 

improving, but as new methods are developed, it becomes increasingly important to 

obtain a clearer understanding of DRUJ biomechanics.  Loads at the DRUJ are of 

particular concern when developing new improved treatment options that would 

maintain anatomical function and load bearing capability, such as total DRUJ 

replacements.  Currently, such knowledge is incomplete, and further study is required to 

fully quantify the loads seen at the DRUJ as well as the role that individual muscles play 

in creating those loads.   
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1.2.2 Purpose 

 The ultimate goal of this research is to improve treatment outcomes related to 

DRUJ dysfunction.  The present research helps to achieve this goal by the following 

specific aims: 

1. To determine the muscle activity and force exerted during forearm rotation from 

muscles thought to influence DRUJ loading and cause forearm rotation 

2. To create a mathematical model of forearm muscles to quantify the loads 

occurring at the DRUJ during forearm rotation 

3. To examine the individual contribution of each muscle on the total calculation of 

DRUJ loads 

 

1.2.3 Research Plan 

 The rationale for determining forces at the DRUJ has already been discussed in 

the preceding sections of this chapter.  Previous attempts and methods used to analyze 

forearm and DRUJ loading are discussed for the rest of Chapter 1.   

 Electromyographic data were collected for fifteen muscles thought to impact 

DRUJ loads at various stages of forearm rotation during pronation and supination.  The 

data were then examined to see which muscles may have an impact on DRUJ loading 

based solely on their electrical activity.   The EMG study is described in Chapter 2. 

 The EMG activity of the fifteen muscles was used to scale published physiological 

cross-sectional area data and muscle tension fraction data that represented the 

maximum force generating capacity of each muscle.  The resulting scaled muscle forces 

represented muscle exertion during forearm pronation and supination.  The muscle 

forces were then paired with muscle orientation data collected from cadaveric forearms 

at various stages of forearm rotation.  Once the magnitude and direction of the muscle 

forces were determined, a mathematical model of loading at the DRUJ based on the 

muscle forces was created.   This model allowed for the calculations of transverse 

(medial-lateral), shear (anterior-posterior), and resultant forces at the DRUJ.  The 

resultant forces are the resultant of the shear and transverse forces (forces in the 
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transverse plane of the DRUJ).  The development and results of the muscle loading 

model are described in Chapter 3. 

 Once the mathematical model of DRUJ forces had been created, the roles of the 

individual muscles in DRUJ loading were analyzed.  This analysis was done by removing 

each muscle from the model, one at a time, to examine the effect that the muscle of 

interest had.  The results of this analysis can be seen in Chapter 4. 

 Chapter 5 gives an overview of the results found in Chapters 2-4 in addition to 

study limitations, clinical implications of the results, and possible future studies. 

 

1.3 Electromyography  

 

1.3.1 EMG Background 

For a muscle to produce a force, the muscle fibers must be activated by an 

electrical impulse from a motoneuron in the central nervous system.  Once the impulse 

reaches the muscle fibers, a series of events occurs resulting in the generation of an 

action potential in the muscle fiber.  The analysis of these action potentials is called 

electromyography (EMG), and it can be used to determine the muscular force based on 

the amplitude of the EMG signal (101).  If a quantitative relationship between the EMG 

signal and force is required, the contraction of interest must be isometric (48).  The 

general approach for estimating muscle activation is to normalize EMG data obtained 

during functional isometric tests to EMG data from a maximal contraction (116, 118).   

EMG signals can be collected from surface electrodes or indwelling electrodes 

which are placed directly within the muscle.  Surface electrodes are placed on the skin 

and are good for measuring large muscles close to the skin surface.   However, surface 

electrodes may be inadequate for detailed studies of muscle activation (197), muscles 

far from the skin surface, and small muscles.  This inadequacy is due to the size of the 

electrodes and the possibility of receiving signal noise from other muscles.  An 

alternative to the surface electrode is the indwelling electrode.  This type of EMG 

involves using needles to place two fine wires into the belly of the muscle of interest 
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which act as leads to directly monitor the electrical activity.  The primary drawbacks of 

fine wire EMG involve the invasive nature of electrode placement.  This results in more 

human subject regulation, limits on the allowable number of electrodes that can be 

inserted at one time as well as the physical discomfort associated with the electrode 

placement.   It is important to remember that both types of EMG are tools used to give 

an overview of muscle function.  The measured action potentials come from the section 

of the muscle where the electrode is placed, and the observed signal does not 

necessarily represent the action of the muscle as a whole.  Electromyography and 

electrophysiology are time-tested methods of muscle research and encompass an entire 

field of study.  Therefore, numerous publications exist regarding EMG activity of various 

upper extremity muscles while performing a large variety of tasks.  However, there is 

not a comprehensive set of indwelling EMG data that contains each of the forearm 

muscles thought to affect forearm rotation and DRUJ loading throughout the range of 

forearm rotation during isometric supination and pronation.    Understanding of muscle 

activity during isometric exertion is a key step needed to determine muscle forces and 

the role those forces play in DRUJ loading.  A review of literature involving the motion of 

interest, forearm pronation and supination, is provided in section 1.3.2.   

 

1.3.2 Forearm Rotation EMG Literature Review 

 Basmajian and Latif (16) used indwelling electrodes in twenty subjects at the 

short and long head of the biceps brachii (BB), brachialis (BRA), and the brachioradialis 

(BRAR).  They examined muscle activity during forearm pronation and supination both 

with and without resistance and with the elbow flexed at 90° and 135°.  They found 

minimal muscle activity during forearm supination with the elbow extended.  However, 

they found that when the elbow was flexed and supination was resisted, there was 

marked activity in both heads of the biceps and some activity of the brachialis and 

brachioradialis.  During pronation with the elbow fully extended, no activity was seen 

without resistance.  When resisted, potentials of marked amplitude were observed for 

the BRAR and slight activity for the BB and BRA. 
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 Basmajian and Travill (17) used indwelling electrodes in eight subjects to 

investigate the EMG activity of the pronator quadratus (PQ) and the pronator teres (PT).  

The activities studied were pronation and supination performed both slowly and quickly.  

They found that during pronation activities that the pronator quadratus was much more 

active than the pronator teres, and during supination, the activity of both muscles was 

negligible. 

 De Sousa et al. (49) examined the BRAR in ten subjects during free pronation and 

supination both with and without an added load of 360 gm.  They found that free 

pronation and supination of the forearm resulted in no action potentials of the BRAR.  

Loaded pronation and supination also exhibited no muscle activity. 

 Moore used indwelling electrodes to examine the role of the short and long 

heads of the BB and the BRAR in eighteen subjects during pronation and supination 

(135).  The subjects were asked to hold their position at maximum pronation and 

supination.  She found that none of the subjects exhibited muscle activation in the same 

manner.  During the hold in the fully pronated position, most subjects exhibited a 

decrease in action potential for the BB.  During the hold in the fully supinated position, a 

marked increase was exhibited in at least two of the three muscles investigated.   

 Taniguchi et al. (187) used surface EMG to examine reaction times of the BB 

during simultaneous forearm flexion and supination in sixteen subjects. The elbow 

flexion angles examined were 45° and 110° while the forearm rotation angles were 90° 

of pronation and 45° of supination.  They found that during supination the reaction 

times were significantly faster with the forearm at 90° of pronation than at 45° of 

supination.   

 Hebert et al. (88) used surface EMG to examine the cocontraction of the BB, 

BRAR, triceps brachii (TB) and anconeus (AN) during a combination of pronation, 

supination and flexion exercises in six subjects.  The subjects were asked to flex the 

forearm from 0 to 100% maximum voluntary contraction (MVC), do the same thing with 

the addition of a 20% MVC pronation effort followed by a similar coordinated 

contraction with a 20% MVC supination effort.  This was done with the elbow in the 
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semi-prone position with the elbow flexed at 50°, 90° and 130°.  They found that the BB 

is more active in supination than in pronation.  No significant difference from forearm 

rotation was observed for the BRAR, TB and AN. 

 Van Zuylen et al. (197) examined the behavior of the supinator (SUP), pronator 

teres (PT), TB, BRA, BRAR and BB using fine wire electrodes in eight subjects.  The 

forearm was held at the neutral position with elbow flexion ranging between 40° and 

180°.  The subject was asked to pronate or supinate to a specified torque level while 

maintaining a specified elbow flexion torque.  They found that the contribution of 

individual muscles to forearm torque seemed to be independent of the amount of 

torque exerted.  They also found that elbow flexion angle significantly affected the 

activation of the BB and SUP during supination.  The activation of the SUP increased 

whereas the activation of the BB decreased, indicating that the more biomechanically 

effective muscle received more activation.  The PT and PQ exhibit a similar relationship 

as the BB and SUP.  As the arm extends, the PT becomes biomechanically less effective 

while the PQ remains unaffected.  

 Jamison and Caldwell (98) used surface EMG to examine the activity of the BRAR, 

TB, and BB.  Twenty subjects were asked to maintain maximum elbow flexion force 

while simultaneously maintaining one of seven specified torque levels during either 

pronation or supination.  The elbow was flexed at 90° and the forearm was midway 

between fully supine and fully prone.  They found that the flexion and supination task of 

the BB tended to increase EMG activity while the flexion and pronation task acted to 

diminish it.  The trends of the BRAR were opposite those of the BB.  In a similar study, 

Caldwell et al. (35) used surface EMG to examine the activity of the BB and BRAR in 

fourteen subjects.  EMG data were collected during maximum flexion with supination 

torque at 0 Nm, supination with flexion torque at 0 Nm, flexion torque with maximum 

supination torque as well as supination torque with maximum flexion torque.  They 

found that the combined tasks exhibited greater EMG amplitude than any of the 

individual tasks. 
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 Bechtel and Caldwell (18) also analyzed muscle activity during dual tasks of 

flexion and supination.  They used surface electrodes on the BB, BRAR and TB of ten 

subjects who were asked to exert maximum forearm flexion, maximally supinate the 

arm and then exert a combination of maximum flexion and 50% supination.  All tests 

were done between 30° and 110° of elbow flexion in 20° increments.  They concluded 

that the BB exhibits greater EMG activity as the arm extends.  They also found that the 

BB and BRAR exhibit a reciprocal co-activation relationship during dual activation tasks.   

 Naito et al. used indwelling electrodes to examine the activity of the BB, BRA and 

BRAR during pronation and supination, slow and fast movement, with and without load, 

for a single subject (141) and for nine subjects (140).  During pronation and supination 

exercises, the elbow was either at 30°, 60° or 90° of flexion.  They found that during 

slow forearm rotation, the BB exhibited more activity during supination than during 

pronation while the BRAR exhibited the opposite.  An increase in the BB activity was 

often accompanied by a decrease in the activity of the BRA and BRAR. 

 Mukhopadhyay et al. (137) used surface EMG to measure BB and PT activity in 

twenty-seven subjects. They performed 20% maximum pronation torque with the 

forearm 60% prone, neutral and 60% supine.  All of these tests were done with elbow 

flexion angles of 45°, 90° and 135° and upper arm angles of 45° of flexion, N and 45° of 

extension.  They found few combinations of arm articulations that exhibited significant 

change in muscle activity.  The PT exhibited a significant increase from neutral to the 

pronated position.  A significant difference in BB activity was only observed during 

changes in elbow flexion and upper arm position and not the position of forearm 

rotation. 

 Staudenmann et al. (181) used a combination of surface and indwelling 

electrodes to analyze the BB, BRA, BRAR and TB.  Ten subjects were asked to 

isometrically pronate and supinate their arms while simultaneously exerting a forearm 

flexion force.  All experiments were done with the forearm in the neutral position and 

the elbow flexed at 90°.  They found no correlation between pronation and supination 

torques and the time to failure of a sustained elbow flexor contraction.  Subjects that 
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exhibited a high correlation between EMG amplitudes also demonstrated a high 

correlation between EMG amplitude and changes in forearm rotation torque. 

 Boland et al. (24) used fine wire EMG to measure the BRAR activity of ten 

subjects.  Forearm rotation tasks were conducted with the elbow at 90° of flexion and 

included supination to neutral and back as well as pronation to neutral and back.  These 

tests were done under four different loading conditions (0N, 9N, 18N, and 27N).  The 

tasks were divided into concentric supination and eccentric pronation as well as 

concentric pronation and eccentric supination.  Concentric pronation and eccentric 

supination activity were significantly greater than the concentric supination and 

eccentric pronation activity with 18N and 27N loads. 

 O’Sullivan and Gallwey (147) investigated EMG activity of multiple muscles 

during isometric pronation and supination at different positions of forearm rotation.  

They used surface EMG to measure the activity of the PT, PQ, BB, BRAR, deltoid (DT) and 

extensor carpi radialis brevis (ECRB) during maximum torque exertions in twenty-four 

subjects.  Maximum torque was measured with the elbow flexed at 0°, 45°, 90° and 135° 

while the forearm exerted isometric rotational effort at 75% prone, neutral and 75% 

supine positions.  Subjects generated maximum strength for three seconds and then 

held the maximum for one to two more seconds.  They found that during supination 

torque, the forearm rotation angle significantly affected the activity of the activity of the 

BB, BRAR and ECRB.  During pronation torque, forearm rotation angle significantly 

affected activity of the PT, BRAR, DT and ECRB. 

 Gordon et al. (80) used indwelling electrodes to determine the activity of the 

SUP, BB, PQ and PT during isometric pronation and supination.  They used fourteen 

subjects, maintained the elbow at 90° of flexion and asked the subjects to maximally 

pronate or supinate with the forearm in full supination, mid-supination, neutral, mid-

pronation and full pronation.  They found that the BB and SUP were highly active during 

supination and that the PQ and PT were highly active during pronation.  They also 

determined that the SUP is the primary muscle involved in supination and the PT is the 

dominant muscle involved in pronation.  
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1.4 Muscle Modeling Parameters 

 

1.4.1 Introduction to Muscle Modeling Parameters 

The sarcomere is the basic unit of muscle contraction (27).  The characteristics 

that influence the mechanical force producing properties of muscle are known as 

muscle architecture (33).  Muscle architecture is defined as the arrangement of muscle 

fibers relative to the axis of force generation (61).  Muscle groups are highly specialized 

with regard to architecture and, therefore, function (125).  The variables that distinguish 

one muscle from another relate to the number of sarcomeres in a series and the 

number of sarcomeres in parallel.  Fibers of fusiform muscle run parallel to a line joining 

the muscle origin and insertion (33).  Pennate muscles have fibers oriented at an angle 

to the tendon and produce force both parallel and perpindicular to the tendon.  This 

means that the force transmitted in the direction of the tendon (33) is represented by: 

 

FT=FFcosƟP                                                                      Equation 1.1 

 

FT represents the force in the direction of the muscle tendon, FF represents the force of 

the muscle fiber and ƟP represents the angle of pennation of the muscle fiber. 

A pennate muscle has shorter fibers than a fusiform muscle of equal volume.  

Therefore, it can produce more force than a similar fusiform muscle (33).  A muscle’s 

anatomic cross sectional area (ACSA) indicates the number of fibers in parallel and can 

thus be used as an indicator of the muscles maximum force capacity (33).  Because not 

all fibers run in parallel and to account for the fact that not all fibers run the entire 

length of a muscle belly (Fig. 1.4), the term physiological cross-sectional area (PCSA) was 

introduced.  PCSA is calculated by dividing muscle volume by the mean fiber length (33).  

The physiological cross-sectional area of muscle fibers is proportional to the maximum 

tension they can produce (27, 28, 96, 160, 217).  Several studies have examined PCSA 

and other modeling parameters of upper extremity muscles (7, 18, 27, 28, 34, 96, 116, 
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124, 125, 139, 198, 216).  Many of these calculated the PCSA differently from one 

another.  When PCSA is used for the determination of relative muscle contributions, the 

exact calculation procedure for PCSA is of lesser importance than the use of a consistent 

data set (44).   

 

 
Figure 1.4.  Muscle PCSA and ACSA 

 

This figure demonstrates different pennate muscle fiber arrangements.  Anatomic cross 

sectional area (APCA) is illustrated with blue lines and physiological cross sectional area 

(PCSA) is demonstrated with green lines.  This figure is reproduced with permission of 

the original author, Uwe Gille.  The terms of the licensing agreement can be viewed at 

http://creativecommons.org/licenses/by-sa/3.0/deed.en. 

 

1.4.2 Muscle Parameters Used  

 Of all the upper extremity muscle PCSA studies examined, the study by Brand et 

al. (27) investigated the largest number of muscles  of interest (thirteen muscles) for the 

purposes of this dissertation.  Because of the importance of maintaining a consistent set 

of muscle architecture data (44), the data from Brand study were used for every muscle 
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of interest except for the BB and the BRA.  They reported their findings not as PCSA, but 

as a percentage of the single contraction tension capability of all muscles below the 

elbow combined, which they termed “tension fraction”.  Their study used fifteen hands 

to determine the mean and standard deviation of multiple muscle modeling 

parameters.  Mass and fiber length measurements from the last five of these hands 

were used to calculate tension fraction. The mass of each muscle of interest was 

converted to volume by a conversion factor of 1.02 gm/cm3 and then divided by the 

mean muscle fiber length.  This gave the PCSA of that muscle.  They reported that the 

average combined PCSA of all the forearm muscles was 141 cm2 and the PCSA of each 

muscle was expressed as a percentage (tension fraction) of that figure.    

 Because Brand’s group focused on the role of muscles below the elbow, 

architectural characteristics of the BB or the BRA were not reported (27).  Architectural 

parameters for the BB and BRA published by Murray et al. (139) were used instead.  In 

their study, ten upper extremities were analyzed that had been fixed in formalin.  Upon 

removal of a particular muscle, the length of the distance from the origin to the 

insertion was measured as well as the pennation angle, fascicle length and sarcomere 

length.  Because it was hard to measure individual fiber lengths, fascicle lengths were 

used instead.  They calculated the optimum fascicle length (𝑙𝑜) by normalizing the 

measured fascicle lengths (𝑙𝑓) to a sarcomere length (𝑙𝑠) of 2.8 µm which is considered 

to be the optimum sarcomere length in human muscle (203) to get the equation: 

 

𝑙𝑜 = 𝑙𝑓 2.8
𝑙𝑠

                                                Equation 1.2 

 

They then calculated the PCSA of each muscle by dividing the muscle volume by the 

optimum fascicle length (𝑙𝑜).  To get the muscle volume from the muscle mass 

measurements, a conversation factor of 1.06 gm/cm3 was used.  The reported values for 

the PCSA of the BB was a combination of the PCSA of the long head of the biceps (2.5 

cm2) and the short head of the biceps (2.1 cm2) to get a PCSA of 4.6 cm2. 
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To get the theoretical force produced by a muscle, the PCSA must be multiplied 

by a constant representing the amount of work that a muscle can do per unit area.  

There is a great variety in the actual reported values of this constant.  Zajac (217) 

reports that muscles with high PCSA’s have the capacity to generate high forces ranging 

from 2.55-3.57 kg/cm2 (217).  Holzbaur created a model of the upper extremity and 

used 4.59 kg/cm2 for muscles of the forearm and hand (91, 96, 124, 125) and             

14.29 kg/cm2 for muscles of the elbow (9, 91, 139)  and shoulder (115).  The figure of 3.6 

kg/cm2 was first used by Recklinghausen in 1920 and was used by Brand in his muscle 

analysis (27, 28).  Because this value is in the approximate middle of the ranges 

(excluding the 14.29 kg/cm2 value) and because Brand’s data were the primary source 

for the muscle modeling parameters used here, 3.6 kg/cm2 was used as the muscle force 

constant in this dissertation.   

 

1.5 Forearm Loading Overview 

 

Forces in the DRUJ occur along three primary axes.  Axial forces are transmitted 

at the distal ends of the radial and ulnar head along the long axis of the forearm.  Shear 

forces occur in the anterior/posterior direction relative to the radius.  Transverse forces 

occur in the medial/lateral direction relative to the radius.   The relative muscle-to 

muscle strength in forearms is fairly constant.  It is not the strength that matters but 

balance.   

Axial forces have been determined in a variety of ways because the assumption 

can be made that force is transmitted along the entire length of the radius and ulna.  

Shaaban et al. (177, 178) used strain gauges to measure axial load.  Gauges were placed 

on the dorsal and volar surfaces of the distal third of the radius and ulna.  Load 

transmission during pronation-supination was reported for axially loaded and unloaded 

states for a variety of pathological and surgical conditions.  Shaaban’s data were limited 

because only force, but no acceleration, data were provided.  Load cells have also been 

used to quantify axial loading in the distal forearm.  Werner (211) quantified axial force 
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changes in the radius/ulna in response to wrist deviation, ulnar length changes and 

removal of the triangular fibrocartilage. This study involved mounting the load cell 

across an excised portion of the bone in the distal half of the arm. A similar load cell 

configuration has been used by others to quantify: the effect of excising the 

interosseous membrane (23), varying wrist and forearm position (5), and distal ulna 

replacement and hemi-resection arthroplasty (192).  Other load cell mounting 

configurations have also been employed (128, 129, 153, 154, 156, 157). 

Because of the small contact area between the radius and ulna, in situ 

measurements of transverse and shear forces are much more difficult, and few 

attempts have been made. The only known means of obtaining transverse and shear 

force data in the normal DRUJ that have been attempted utilize either pressure sensitive 

film or thin film pressure sensitive transducers (95, 144, 178, 200, 212).  Despite the 

spatial resolution of these techniques, they do not provide reliable transverse or shear 

force data.  The only report of both transverse and shear forces in the DRUJ is found 

from data based on an instrumented prosthetic ulnar head placed in cadavers mounted 

in a joint simulator (78, 79).   

In addition to cadaver studies, a number of finite element analysis (FEA) models 

have been developed to look at various characteristics of the wrist and distal forearm.  

Some of the models that have been developed for the forearm examine stress 

distribution of a ceramic lunate (149), stress transfer at the radio-carpal joint (10, 11),  

stress distribution in malunited Colles’ fracture (134), carpal load transmission to the 

wrist (37), load transfer of the distal radius (193), and load transfer of the wrist to the 

radius and ulna during gripping (69).  None of these studies has specifically examined 

the DRUJ, and none has simulated the effect that muscles might play on joint 

mechanics.   

Mathematical modeling of the DRUJ (8, 65, 194, 210) and mechanical joint 

simulators (72, 78, 79, 87, 99, 213) have been used to quantify forces in the distal 

forearm, design new implants, and evaluate therapeutic procedures.  These, however, 

have incorporated only a few forearm muscles (8, 65, 72, 78, 87, 99, 194, 210, 213), 
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making the accuracy of the results from these methods unclear.  A forearm model that 

more realistically represents the anatomy may lead to an improved analysis of the DRUJ 

and enable improved understanding of forearm biomechanics.  

None of the experimental or computational methods mentioned provides three 

dimensional forces experienced by the normal DRUJ during pronation-supination.  In 

addition, none of the theoretical finite element models has been used to calculate the 

force between the radius and the ulna, only force transmission from the wrist.  

Furthermore, none of these models has considered the effect of more than four muscles 

on DRUJ resultant forces.  A model based on in-vivo data that would include muscle 

forces during pronation-supination would provide previously unavailable insights into 

the DRUJ joint reaction forces and distal forearm biomechanics, thereby leading to 

improved treatment options and outcomes.   
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CHAPTER 2: DETERMINATION OF FOREARM MUSCLE ACTIVITY DURING FOREARM 

PRONATION AND SUPINATION 

 

NOTE: This chapter was written as a stand-alone manuscript submitted to the Journal 

of Hand Surgery in May of 2011. 

 

2.1 Introduction 

 

Compared to the hip or knee, little is known about the biomechanics of the 

forearm, yet injuries and diseases of this extremity are of increasing importance as baby 

boomers age, incur fractures, and develop subsequent disability.  Distal radius fractures 

are one of the most common upper-extremity injuries, comprising approximately 15% of 

all fractures (30).  Suboptimal treatments for distal radius fractures have been 

associated with significant complications, e.g. radioulnar impingement and distal ulna 

joint instability (95).   Improved treatments for distal radius fractures, especially those 

involving the distal radioulnar joint, require an understanding of the forces to which the 

distal radius and ulnar head are exposed at the distal radioulnar joint (DRUJ).   

Mathematical modeling of the DRUJ (8, 65, 194, 210) and mechanical joint 

simulators (72, 78, 87, 213) have been used to quantify forces in the distal forearm, 

design new implants, and evaluate therapeutic procedures.  Most of these methods, 

however, have incorporated only a few forearm muscles (8, 65, 72, 78, 87, 194, 210, 

213), and, thus, the accuracy of the resulting models and long-term implant 

performance have been questioned.  Forearm models that more realistically represent 

the anatomy may lead to an improved model of the DRUJ and enable better 

understanding of forearm biomechanics.  

Electromyography (EMG) is useful for understanding how forearm muscle 

activity is associated with forearms biomechanics, but to date few publications exist that 

provide comprehensive quantitative upper extremity EMG data.  EMG data, in 
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conjunction with anatomic landmarks, are essential because these data enable 

quantification of unknown muscle forces.  It is widely accepted that the biceps brachii, 

supinator, pronator quadratus and pronator teres muscles are predominantly 

responsible for forearm pronation and supination (15, 85, 148, 215), but the role of 

other forearm muscles is unclear.   The purpose of the present study was to quantify the 

role of each of the fifteen individual muscles thought to contribute to forearm pronation 

and supination. 

 

2.2 Material and Methods 

 

2.2.1 Study Design 

This was a prospective Institutional Review Board approved laboratory study of 

forearm pronation and supination motion and accompanying muscle activity in normal 

adults.  All of the muscles acting across the elbow contribute some portion of forearm 

pronation-supination torque or varus-valgus torque (31) and, thus, could be considered 

in an analysis of forearm biomechanics (197).  The present design examines muscles 

that were either thought to predominate in forearm rotation, cross the central axis of 

the forearm, or have a potential role in DRUJ loading.  The muscles analyzed include the 

abductor pollicis longus (APL), biceps brachii (BB), brachialis (BRA), brachioradialis 

(BRAR) , extensor carpi radialis brevis (ECRB), extensor carpi radialis longus (ECRL), 

extensor carpi ulnaris (ECU), extensor indicis (EI), extensor pollicis longus (EPL), flexor 

carpi radialis (FCR), flexor carpi ulnaris (FCU), palmaris longus (PL), pronator quadratus 

(PQ), pronator teres (PT), and the supinator (SUP).  

 

2.2.2 Subject Inclusion and Exclusion Criteria 

Young healthy adult volunteers were examined by a physician to ensure that no 

forearm or wrist pathology existed.  Subjects were excluded from consideration if they 

had prior forearm/wrist/elbow surgery, injury or arthritis involving the elbow or wrist, 

neurologic disorders, or aversion to needles.  Since fifteen forearm muscles were 
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studied by invasive techniques, this study was divided into four sub-studies.  The right 

arm of eleven healthy subjects was used for each of these four studies.  Some subjects 

volunteered for more than one of the four sub-studies (Table 2.1). 

 
Table 2.1. EMG Study Subject Data 

Muscles and subjects examined in the four separate EMG test sub-groups 

 
 

2.2.3 EMG Experimental Protocol 

The muscles of interest were isolated by using published guidelines (155).  Two 

sterile, bipolar, Teflon-insulated 50μm fine-wire electrodes (California Fine Wire Co., 

Grover Beach, CA) with 3-5 mm exposed tips were inserted 1 cm apart in each muscle of 

interest by using a two-needle sterile insertion technique (105).  The 27-gauge needles 

were immediately removed leaving the indwelling fine wire electrodes imbedded.  A 

grounding surface electrode was placed on the acromion of the right shoulder.   

  A five second baseline test was collected while the subjects relaxed their arm in 

the horizontal position.  To scale the muscle activity among subjects, maximum EMG 

activity of the muscle of interest was determined by using published maximum 

voluntary isometric contraction exercises (MVIC) (106).  Each MVIC was performed 

three times for five seconds with a two minute rest interval between trials. An 

abduction pillow was placed under each arm to standardize the procedure during 

dynamometer testing and to allow the subject to comfortably rest between trials. To 

obtain the maximum torque values (18, 31), each subject was asked to stand upright, 

hold the handle of a dynamometer (BTE Technologies, Hanover, MD) in a neutral 

forearm position with the elbow at 90° of flexion (Fig. 2.1).  The height of the 

dynamometer was adjusted so that the subject’s forearm was horizontal throughout the 

Test    
Group Muscles Examined Subjects Males Females

Mean 
Age(SD)

Reused 
Subjects

1 APL, ECU, FCU 11 7 4 26.3 (2.5) 0
2 BB, ECRB, FCR, EPL 11 8 3 25.6 (3.2) 6
3 ECRL, EIP, PT, SUP 11 6 5 26.5 (2.6) 9
4 BRA, PQ, BRAR, PL 11 6 5 26.4 (3.1) 9
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tests. The foot position of each subject was marked so that this position could be 

replicated throughout all trials.  

 

 
Figure 2.1. Testing Apparatus 

Testing procedure showing subject holding the handle of an isokinetic dynamometer 

with an abduction pillow under the instrumented (fine wire EMG electrodes) arm. 

 

 The handle of the dynamometer was randomly placed in one of nine positions of 

forearm rotation: 1) maximum pronation, 2) 75° of pronation, 3) 50° of pronation, 4) 25° 
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of pronation, 5) neutral, 6) 25° of supination, 7) 50° of supination, 8) 75° of supination, 

and 9) maximum supination.  Each subject was asked to grip the dynamometer handle 

at the specified position and pronate the forearm with as much force as comfortably 

possible for five seconds.  Gripping was combined with pronation and supination 

because it was considered representative of daily functional motions.  After five 

seconds, a tone from the dynamometer signaled the end of the trial.  Each subject had a 

two minute rest interval prior to the next effort to reduce fatigue effects (22, 188).  This 

procedure was followed for a total of three repetitions, and then the same procedure 

(five seconds of effort and two minutes of rest) was repeated with the subject exerting a 

supination effort.  For the maximum pronation and maximum supination positions, the 

angle of rotation was measured and recorded by using a magnetic protractor. This series 

of dynamometer tasks resulted in a total of 54 pronation-supination trials per subject.  

The value chosen to represent the maximum signal of a given muscle was the largest 

root-mean-square value recorded for that muscle from an individual subject throughout 

the MVIC tests or dynamometer tests.  The effects of muscle fatigue and order bias 

were reduced by employing a Latin Squares test sequence design for the specific angles 

used for each subject. 

 

2.2.4 Data Processing 

EMG data were collected at 2,000 Hz by using a portable Myopac amplifier (Run 

Technologies, Mission Viejo, CA) and stored on a personal computer for post-processing.  

The EMG data were full wave rectified and then filtered by using a low-pass cutoff 

threshold of 5 Hz and a 2nd-order Butterworth filter.  All raw EMG signals were digitally 

band pass–filtered between 10 and 1,000 Hz and smoothed with a root-mean-square 

algorithm that had a time constant of 20 milliseconds. The processed average value of 

the appropriate baseline test was subtracted from all processed EMG data.  The largest 

root-mean-square amplitude observed during all individual muscle testing for each 

subject was used to represent 100% muscle exertion.  The peak values for each of the 

three trials for a specific direction and arm position were averaged and normalized to 
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the maximum activity recorded for an individual muscle and subject.  The normalized 

data for a specific muscle, forearm direction, and angle were then averaged across all 

eleven subjects.  All data were processed with Datapac 5 software (Run Technologies, 

Mission Viejo, CA) and Matlab 7.0.1 (The Mathworks, Natick, MA). 

 

2.2.5 Data Analysis 

A repeated measures ANOVA was used to compare normalized EMG data 

obtained from each muscle as a function of forearm rotation angle and direction.  

Individual differences were determined by post-hoc analyses employing the Newman-

Keuls test.   

 To determine if a muscle primarily contributed to forearm pronation or forearm 

supination, it had to meet two of the three following criteria: 

 

1.) The average muscle activity must be among the three most active muscles 

observed during any position or direction.  

2.)  A statistically significant difference must exist between overall pronation activity 

and overall supination activity for a specific muscle.  

3.)  A significant difference must exist between pronation activity and supination 

activity of that muscle at one or more of the nine tested positions.   

 

If a muscle did not meet two of these three criteria, then it was considered not to affect 

forearm rotation in either direction.  It should be noted that just because a muscle was 

considered to have no affect on forearm rotation does not mean that the muscle does 

not contribute to the biomechanics of the forearm. 

 

2.3 Results 

 

 The muscles that exhibited the highest activity levels during pronation were the 

PQ, PL, PT, and FCR (Table 2.2).  The muscles that exhibited the highest activity levels 
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during supination were the BB, ECU, SUP, and APL (Table 2.2).  The muscles which 

exhibited significantly higher activity levels during pronation compared to supination at 

the same position were the BRAR, FCR, PL, PQ, and PT (Fig. 2.2).  The PQ and PT were 

significantly greater while pronating in each of the nine tested positions.  The biceps 

brachii was the only muscle that exhibited significantly higher activity levels during 

supination compared to pronation at the same position; this difference was significant 

at each of the nine tested positions. 

 When comparing overall pronation to overall supination activity, the muscles 

which had a greater pronation activity were the BRA, BRAR, ECRL, FCR, PL, PQ, and PT 

(Table 2.3).  The muscles which had greater supination activity were the APL, BB, and 

SUP (Table 2.3). 

 

Table 2.2. EMG Activity Ranking of 15 Forearm Muscles 
The EMG activity of each of the muscles examined is listed from most active to least 

active at each position of forearm forearm rotation during both pronating and 

supinating efforts.  Muscle abbreviations are noted in the methods section. 

 
 

 

 

 

 

MaxP 75P 50P 25P N 25S 50S 75S MaxS MaxP 75P 50P 25P N 25S 50S 75S MaxS
1 PQ PQ PQ PQ PQ PL PL PL PL ECU ECU ECU ECU SUP APL BB BB BB
2 PT PT PT PT PL PT PT PQ FCR SUP SUP BB SUP ECU SUP APL APL SUP
3 EIP ECU FCR ECU ECU PQ PQ FCR ECU BB APL SUP BB BB BB SUP SUP APL
4 ECU EIP ECU PL PT FCR ECU ECU PQ APL BB APL APL APL ECU EIP EPL ECU
5 SUP SUP ECRB FCR FCR ECU FCR PT PT ECRB ECRB FCR ECRB EPL EPL EPL EIP EPL
6 ECRL EPL EPL EIP ECRB SUP SUP SUP SUP ECRL PL ECRB EPL EIP ECRB ECU ECU EIP
7 EPL ECRL PL SUP SUP BRAR BRAR BRAR BRAR FCU FCR EIP EIP ECRL ECRL ECRB FCR FCR
8 PL ECRB EIP ECRL ECRL EIP APL ECRB FCU BRAR ECRL PL FCR ECRB EIP PQ ECRL ECRL
9 APL APL APL ECRB EIP ECRL BRA BRA APL EPL BRAR ECRL ECRL PQ FCR ECRL FCU FCU

10 ECRB PL ECRL EPL EPL APL EIP APL ECRB PL EIP EPL PL FCR FCU PL ECRB PL
11 BRA FCR SUP APL APL FCU ECRL FCU ECRL EIP EPL BRAR FCU BRAR PL FCU PL ECRB
12 BRAR BRAR BRAR BRAR BRAR ECRB ECRB EIP EIP FCR FCU FCU BRAR FCU PQ BRA BRA PT
13 FCR BRA BRA BRA BRA BRA FCU ECRL BRA PQ PQ PQ PQ PL BRAR FCR PQ BRA
14 FCU FCU FCU FCU FCU EPL EPL EPL EPL BRA BRA BRA BRA BRA PT PT PT PQ
15 BB BB BB BB BB BB BB BB BB PT PT PT PT PT BRA BRAR BRAR BRAR

SupinatingPronating
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Figure 2.2. Forearm Muscle EMG Activity 

Mean (± SD) normalized muscle activity for each of fifteen muscles at nine positions in 

eleven subjects during maximum voluntary isometric pronation and supination. * 

indicates a significant difference (P<0.05) in muscle activity between pronation and 

supination at the same angle.  Larger versions of these plots are included in Appendix D. 
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Table 2.3. Muscles with Overall Significant Differences 

Muscles which exhibited a significant difference between the overall rotation effort 

exerted in pronation (P) and supination (S) are shown. 

 
 

 

2.4 Discussion 

 

It has been widely accepted that the primary pronators of the forearm are the 

pronator teres and pronator quadratus while the primary supinators are the biceps 

brachii and supinator (15, 85, 148, 215). The new information contributed by the 

present study is that additional muscles contributing to forearm pronation are the 

BRAR, FCR, and PL.  Similarly, the APL contributes to forearm supination.  The BRA, 

ECRB, ECRL, ECU, EIP, EPL, and the FCU muscles were presently found to have neither an 

overall pronating nor supinating effect on forearm biomechanics.  It is important to note 

that lack of classification as a pronator or supinator does not mean that these muscles 

have no role in forearm biomechanics.   

p value
Dominant 
Direction

APL <0.001 S
BB <0.001 S
BRA <0.001 P
BRAR 0.048 P
ECRB 0.622
ECRL 0.023 P
ECU 0.957
EIP 0.524
EPL 0.218
FCR 0.01 P
FCU 0.57
PL 0.006 P
PQ <0.001 P
PT <0.001 P
SUP 0.004 S
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This study agrees with previous findings that the PT and PQ act as primary 

forearm pronators while the BB and SUP act as primary forearm supinators (15, 85, 148, 

215).  Three (PT, PQ, and BB) of these four muscles exhibited all three of the criteria 

used to positively categorize a pronator or a supinator.  The SUP met only two of the 

three criteria.  There were no significant differences between EMG activations during 

pronation and supination at each position tested for the SUP muscle (Fig. 2.2).  Because 

the dominant role that these muscles play in forearm rotation has been well established 

(15, 85, 148, 215), the following discussion will be focused on how pronation and 

supination are assisted by other forearm muscles identified in this study.  

The FCR, whose primary role is flexion and radial deviation of the wrist (28, 53, 

190), is one of two muscles, other than the primary pronators, that met all three 

pronator criteria.  During pronation the FCR was the second most active muscle at the 

maximal supination position.  The other muscle that met all three criteria was the PL; it 

generates torque in the pronation direction while the forearm is supinated as well as in 

the supination direction while the forearm is pronated (143). While pronating in the 

present study, the PL was the most active muscle in all supinated positions.   

The pronating effect of both the FCR and the PL can be explained by their 

moment arms.  The linear direction of the FCR and PL across the forearm is similar to 

that of the PT.  The origin of these three muscles is near the medial epicondyle of the 

humerus, and all three insert into the lateral side of the forearm when in an 

anatomically neutral position.  

The present data, in agreement with the results of others (24, 98, 140, 141), find 

that the BRAR is more active as a pronator than as a supinator.  Most agree that the 

BRAR acts as a forearm flexor (24, 53, 190), but the other roles of this muscle are 

unclear.  Basmajian claims that it is a pronator of the supine forearm and supinator of 

the prone forearm in resisted movements only (15).  Others assert that it acts as both a 

pronator and a supinator (28, 36, 85, 147).  Gielen et al. note that during pronation, the 

BRAR motor units receive no input (68).  Still others claim that this muscle produces no 

signal during pronation or supination (49, 197).  The present findings also agree with the 
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results of a number of other groups which note a reciprocal relationship between the BB 

and other flexors of the forearm, including the BRA and BRAR (31, 35, 40, 68, 84, 88, 98, 

197).   

Although the present data showed that the APL was one of the two most active 

supinators, these data need to be interpreted with caution because this study collected 

data during a gripping exercise.  Gripping the handle while supinating would have 

activated the APL because the thumb was trying to extend; this did not occur during 

pronation.   It is worth noting that the APL is active throughout pronosupination, and, 

thus, preventing or minimizing pronation and supination may be an important 

additional consideration when prescribing rest for first compartment tendonitis of the 

wrist.   Muscles can also be activated even if their mechanical action does not contribute 

directly to the external forearm torque, and motor units in muscles are not necessarily 

activated if their mechanical action contributes to a prescribed torque (197).   

 

2.4.1 Study Limitations 

Pure forearm rotation in the absence of gripping (80), may better represent true 

pronation and supination, but rarely is this forearm motion performed with an unloaded 

hand.  Although muscular isometric force capacity is directly related to the number of 

motor units activated (36), because motor unit and muscle activation are not 

homogeneous across all subjects, the published MVIC exercises used (106) may not 

actually provide a true maximum signal.  This is the rationale for normalizing the EMG 

data by the largest value observed instead of just the MVIC exercises.  It should also be 

noted that muscles are not activated homogeneously (197) and that the particular 

motor units being measured by the indwelling electrodes may not be representative of 

the activity of the muscle as a whole.  Because other studies have found that elbow 

position affects torque (59, 68, 147, 215), the present findings may be limited to 

horizontal forearms with elbows flexed at a right angle. 
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2.4.2 Study Conclusions 

In conclusion, the brachioradialis, flexor carpi radialis, palmaris longus, and 

abductor pollicis longus contribute significantly to forearm pronation and supination 

along with the previously recognized major contributions of the pronator 

quadratus/pronator teres and the supinator/biceps brachii.  Biomechanical models of 

forearm pronation – supination should include these eight muscles to obtain greater 

accuracy from models of forearm motion and upper extremity biomechanical 

calculations.  Improved forearm biomechanical models will enable advances in fracture 

treatment, trauma-induced muscle dysfunction, or joint replacement. 
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CHAPTER 3: DETERMINATION OF JOINT REACTION FORCES AT THE DISTAL 

RADIOULNAR JOINT 

 

NOTE: This chapter was written as a stand-alone manuscript to be submitted to the 

Journal of Hand Surgery at a later date. 

 

3.1 Introduction 

 

Fracture and instability of the distal radioulnar joint commonly result in 

osteoarthritis.  The problem stems from the tendency of the sigmoid notch and ulnar 

head to heal in an incongruent fashion.  Current surgical techniques used to alleviate 

this problem include ulnar head replacement (131, 196), total joint arthroplasty (150, 

172), ulnar shortening (173),  and  some form of ulnar head or shaft resection with or 

without interposition (14, 25, 32, 47, 70, 102, 164, 165, 168, 208, 209). Resection 

procedures produce at best fair results (21, 62, 67, 75, 208) and have been associated 

with significant complications which include radioulnar impingement and distal ulna 

instability (95). Recent biomechanical studies have shown that even with a 

longitudinally directed force, some pressure goes across the radioulnar articulation 

(157) and that maintaining the distal ulna is biomechanically preferable to resection 

(167).  Improved understanding of the forces occurring at the ulnar head and sigmoid 

notch could facilitate future efforts aimed at improving treatment and clinical 

outcomes.   

Forces at the DRUJ occur along three primary axes.  Axial forces are transmitted 

at the distal ends of the radial and ulnar head along the length of the forearm.  Shear 

forces occur in the anterior/posterior direction relative to the radius.  Transverse forces 

occur in the medial/lateral direction relative to the radius.   Axial forces have been 

determined in a variety of ways because the assumption can be made that force is 

transmitted along the entire length of the radius and ulna.  Some investigations have 

utilized strain gauges to measure axial load (177, 178) while other studies have used 
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load cells to quantify axial loading in the distal forearm (5, 23, 128, 129, 153, 154, 156, 

157, 192, 211).  Because of the small contact area between the radius and ulna, in situ 

measurements of transverse and shear forces are much more difficult to obtain, and 

few attempts have been made. The only known means of obtaining compressive or 

shear force data in the normal DRUJ that have been attempted utilize either pressure 

sensitive film or thin film pressure sensitive transducers (95, 178, 200, 212). Despite the 

spatial resolution of these techniques, they do not provide reliable compressive or shear 

force data.  The only report of both compressive and shear forces in the DRUJ is found 

from data based on an instrumented prosthetic ulnar head placed in cadavers mounted 

in a joint simulator (77).  Forces occurring in multiple planes at the DRUJ, thus, remain 

unclear.   The purpose of this study was to determine the forces at the DRUJ to enable 

future efforts to optimize post surgical rehabilitation and to provide new knowledge 

facilitating future DRUJ implant design. 

 

3.2 Material and Methods 

 

3.2.1 Study Design 

This was a theoretical model based on empirically determined muscle vector 

orientations and subject measured muscle forces.  The muscle forces were determined 

from published tension fraction (27) physiological cross sectional area (PCSA) values 

(139) which determined the theoretical maximum forces that a particular muscle could 

exert.  These were then scaled down with the EMG data discussed in Chapter 2.  The 

maximum signal observed over the course of all EMG tests for each muscle was used as 

the normalizing factor and represented the maximum muscle force from the PCSA data.  

All other EMG data were then expressed as a percentage of this maximum signal.  The 

percentage of the maximum signal that each muscle exhibited for each exercise was 

then used to scale the maximum force values.  These scaled muscle forces were 

combined with the muscle orientation data collected on nine cadaveric upper 
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extremities.  This procedure allowed a model of each of the nine forearms to be 

created, and the data from each of these nine models was then averaged and reported.    

 

3.2.2 Cadaveric Specimen Preparation 

 Nine left fresh cadaveric upper extremities were amputated at mid humerus.  All 

skin and major muscles were excised, with origins and insertions left intact.  Muscle 

origins and insertions were marked by drilling a small hole in the bone at the location of 

interest and inserting a small aluminum pin (Fig. 3.1).  Origins and insertions were 

marked for the following muscles: radial and ulnar attachments of the abductor pollics 

longus (APLR and APLU), biceps brachii (BB), brachialis (BRA), brachioradialis (BRAR), 

extensor carpi radialis brevis (ECRB), extensor carpi radialis longus (ECRL), extensor carpi 

ulnaris (ECU),  extensor indicus (EI), extensor pollicis longus (EPL), flexor carpi radialis 

(FCR), flexor carpi ulnaris (FCU), pronator quadratus (PQ), humeral and ulnar 

attachments of the pronator teres (PTH and PTU), and supinator (SUP).  Reference 

points marked were the anterior and posterior aspects of the sigmoid notch of the 

radius as well as the anterior distal humerus at the coronoid fossa.   

 

 
Figure 3.1.  Example of Cadaver Marker Placement 
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3.2.3 Data Collection 

  The humerus of each arm was attached to the end of a support beam using 

nylon straps, allowing the forearm to hang down at a right angle (Fig. 3.2).  In addition 

the ulna was secured to the fixture so that the only movement occurring was the 

rotation of the radius about the ulna.  A goniometer was used to measure the angle of 

rotation of the forearm.  When collecting data, the angle of rotation, θ, was determined 

by measuring the angle formed by the marker representing the brachioradialis insertion 

and the line represented by the humerus as shown in Figure 3.3.  Neutral position 

corresponded to an angle of 0˚, angles in supination were positive, and angles in 

pronation were negative.  The forearms were rotated in 10° increments until both 

maximum pronation and maximum supination were reached.  At each orientation, 3D 

coordinates were acquired for each marker by touching a stylus used in conjunction 

with an electromagnetic tracking system (Motion Star, Ascension Technologies, 

Burlington, VT, USA) using MotionMonitor software (Innovative Sports, Chicago, IL). 

 

 
Figure 3.2.  Arm Orientation during Muscle Data Collection 
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Figure 3.3.  Determination of Angle of Forearm Rotation  

 

3.2.4 Coordinate Transformation 

 Because all data were collected using the same coordinate system, it was 

necessary to transform the coordinates to an orientation that would be anatomically 

relevant.  For the purposes of this analysis, it was determined that the x-axis would be 

along the long axis of the radius with the line from the coronoid fossa to the marker on 

the anterior sigmoid notch of the radius.  The y-axis would represent the shear axis in 

the anterior-posterior direction (parallel to the sigmoid notch) and the z-axis would be 

perpendicular to the other two, representing the transverse axis as shown in Figure 3.2.  

A transformation matrix was calculated for each orientation to convert from the global 

machine coordinates to the local coordinate system of the forearm.  The three points 

used to determine this transformation matrix were the marker representing the 

coronoid fossa at the elbow, the marker representing the anterior side of the DRUJ at 

the sigmoid notch, and the marker representing the posterior side of the DRUJ at the 

sigmoid notch. 

 Once all of the 3D coordinates had been transformed into the anatomically 

relevant coordinate system, the actual angle of forearm rotation was calculated.  θ was 

mathematically calculated by determining the angle between the line representing the 
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z-axis (transverse direction across radius and ulna) and the line of the humerus 

represented by the marker of the coronoid fossa and the marker representing the 

biceps brachii on the proximal end of the amputated humerus.   

 

3.2.5 Joint Reaction Force Determination 

The joint reaction forces at the DRUJ were determined by summing the 

moments produced by the muscle forces in both the transverse direction (z-direction) 

and in the shear direction (y-direction).  Maximal muscle forces were calculated by using 

published tension fraction data provided by Brand et al. (27) for all muscles except the 

BB and the BRAR.  Brand determined the tension fraction percentage of each muscle.  

He contended that the total PCSA of the arm was 141 cm2.  He also claimed, based on 

the work of Steindler (182), that the force generating capability of muscle was 3.6 

kg/cm2. Therefore the individual muscle force (N) was determined by: 

 

F(N)=(FTF)x(PCSA)x(FM)x(g)                                   Equation 3.1 

 

Where FTF is the tension fraction of the muscle, PCSA is the total physiological cross 

sectional area of the arm, FM is the muscle force generating capability, and g is the 

gravitational constant (9.81 m/s2). 

Brand did not include data on the biceps brachii and brachialis; therefore, the 

maximum force capability for these muscles was determined by using published 

physiological cross section (PCSA) data by Murray et al. (139).  Because the PCSA was 

reported directly for the BB and BRAR, the equation to determine the force was: 

 

F(N)= (PCSA)x(FM)x(g)                               Equation 3.2 

 

Maximum muscle forces based on the Brand and Murray data are shown in Table 3.1.  

The maximum muscle forces were then scaled down to values thought to more 

accurately reflect those seen in daily activities by using the EMG data presented in 
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Chapter 2 as a scaling factor.  The scaled muscle forces used are shown in Tables 3.2 and 

3.3.  Once muscle forces and orientations were determined, moments produced by the 

muscle forces were summed about the elbow.  Forces at the DRUJ were determined by 

dividing the sum of the muscle moments in a particular plane by the distance between 

the DRUJ and the elbow.  Because the scaling EMG data were collected both while the 

forearm pronated and supinated, the results were calculated both for forearm 

pronation and forearm supination.  For this model, the assumption was made that the 

only force offsetting the sum of the moments produced by these muscles at each static 

position was the force occurring at the DRUJ itself.  Effects from other soft tissue such as 

the radioulnar ligaments and the interrosseous membrane were not taken into effect.  

In addition, because muscle moments were summed about the elbow, any load sharing 

effect contributed by the proximal radioulnar joint was not taken into consideration. 

 

Table 3.1. Theoretical Maximum Muscle Forces 

*Indicates  values presented by Murray et al. (139); all other values come from the data 

presented by Brand et al. (27) 

 
 

 

Muscle PCSA (cm2) Force (N)
APL 2.2 77.2
BB 4.6* 162.5

BRA 5.4* 190.7
BRAR 3.4 119.5
ECRB 5.9 209.1
ECRL 4.9 174.3
ECU 6.3 224.1
EI 1.4 49.8

EPL 1.8 64.7
FCR 5.8 204.2
FCU 9.4 333.6
PL 1.7 59.8
PQ 4.2 149.4
PT 3.9 136.9

SUP 10.0 353.5
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Table 3.2. EMG Scaled Pronating Forces 

Maximum muscle forces are scaled by using EMG data (Chapter 2).  The muscles are 

listed in order of greatest force to least force at each position of forearm rotation. The 

force (N) is shown in parentheses.  

 
 

 

Table 3.3. EMG Scaled Supinating Forces 

Maximum muscle forces scaled by using EMG data (Chapter 2).  Muscles are listed in 

order of greatest force to least force at each position of forearm rotation. The force (N) 

is shown in parentheses. 

 
 

MaxP 75P 50P 25P N 25S 50S 75S MaxS
1 SUP(110.9) SUP(135.8) SUP(119.2) SUP(142.9) SUP(148.7) SUP(166.6) SUP(146.4) SUP(173.8) SUP(159.3)
2 PQ(97.7) ECU(104) ECU(102.4) ECU(108.3) ECU(124.4) ECU(111.3) ECU(114.6) ECU(116.8) ECU(122.5)
3 ECU(88.4) PQ(101.8) PQ(99.1) PQ(94.5) FCR(100) FCR(102.5) FCR(101.5) FCR(108.7) FCU(116.8)
4 PT(70.3) PT(75.4) FCR(97.5) FCR(92.9) ECRB(89.8) FCU(97.5) FCU(85.2) FCU(97.9) FCR(114.3)
5 ECRL(53.1) ECRB(71.4) ECRB(89.4) ECRB(77.1) PQ(87.4) PQ(76.6) PQ(79) PQ(82) PQ(70.3)
6 ECRB(49.7) FCR(64) PT(73.7) PT(69.5) FCU(86.3) PT(74.1) PT(76.7) PT(69.7) ECRB(64.5)
7 FCU(44.5) ECRL(60.4) ECRL(59) ECRL(65.4) PT(73.5) ECRB(60.8) BRA(64.7) ECRB(65.1) PT(63.9)
8 FCR(40.8) FCU(59.6) FCU(55.1) FCU(56) ECRL(60.2) ECRL(59.4) ECRB(55.9) BRA(58.8) BRA(55.8)
9 BRA(40.4) BRA(47.6) BRA(47.2) BRA(40.7) BRA(55.1) BRA(53.5) ECRL(48.1) ECRL(48.2) ECRL(52.2)
10 BRAR(25.3) BRAR(35.5) BRAR(34) BRAR(33) BRAR(36.3) BRAR(44.9) BRAR(45.7) BRAR(45.3) BRAR(43.3)
11 EI(20) APL(25.6) APL(28.9) PL(27.5) PL(33.9) PL(33.8) PL(33.7) PL(39.4) PL(34.8)
12 EPL(19.6) EPL(23.8) EPL(26.9) APL(26.4) APL(26) APL(25.1) APL(26.6) APL(23.3) APL(25.9)
13 APL(18.5) EI(20.7) PL(23.9) EPL(22.7) EPL(21.4) EI(17.6) EI(16.5) EPL(17.2) EPL(17.1)
14 PL(17.2) PL(20.1) EI(19.4) EI(21.2) EI(16.9) EPL(15.8) EPL(15.3) EI(13.7) EI(14.6)
15 BB(2.8) BB(9.2) BB(11.2) BB(6.6) BB(5.9) BB(7.4) BB(10.6) BB(10.4) BB(9.9)

MaxP 75P 50P 25P N 25S 50S 75S MaxS
1 SUP(171.8) SUP(173.8) SUP(169.4) SUP(190.9) SUP(192) SUP(177.5) SUP(182) SUP(161.4) SUP(167.9)
2 ECU(134.5) ECU(132.1) ECU(137.1) ECU(121) ECU(114.3) ECU(99.1) BB(95.2) BB(105.4) BB(94.4)
3 FCU(103.9) FCU(92.1) FCU(84.4) FCU(85.2) FCU(83.3) BB(80) ECU(92.2) FCU(76.8) ECU(92)
4 ECRB(85) ECRB(82.7) BB(81.2) BB(79.1) BB(79.5) FCU(76.5) FCU(79.6) ECU(75.5) FCU(75.2)
5 BB(72.4) BB(74.2) FCR(77.4) ECRB(76.2) ECRB(60) ECRB(66) ECRB(60.1) FCR(54.3) FCR(52.5)
6 FCR(58.5) FCR(72.1) ECRB(75.3) FCR(64.3) ECRL(59.6) FCR(53.9) ECRL(46) ECRB(45.9) ECRB(41.2)
7 ECRL(58.2) ECRL(55.9) ECRL(54.3) ECRL(54.7) FCR(55.4) ECRL(51.5) FCR(44.7) ECRL(40.9) ECRL(40.5)
8 BRAR(36.3) BRAR(38.2) APL(35.1) APL(33.2) PQ(42.8) APL(40.8) BRA(43.4) APL(39.8) APL(34.4)
9 PQ(33.6) APL(37.5) PQ(34.7) BRA(29.8) APL(37.2) PQ(29) APL(41.6) BRA(38.7) BRA(29.7)
10 APL(32.6) PQ(31.1) BRA(34.1) PQ(27.9) BRA(32.7) BRA(27.6) PQ(39.6) PQ(30.3) EPL(24.6)
11 BRA(27.1) BRA(30.5) BRAR(32.8) BRAR(27.7) BRAR(30.8) EPL(23.9) EPL(27.5) EPL(24.8) PQ(23.1)
12 EPL(19.6) PL(22.8) PL(19.8) EPL(22.5) EPL(25) PT(20.6) PT(23.7) PT(22.3) PT(22.2)
13 PL(17.8) PT(20) PT(19.7) PT(20.2) PT(21.4) BRAR(18.3) EI(21.3) EI(17.3) EI(17.6)
14 PT(17.6) EPL(18.7) EPL(19.6) EI(16.2) EI(18.9) EI(14.8) BRAR(18) BRAR(15.5) PL(12)
15 EI(14.4) EI(14.8) EI(16.6) PL(15.5) PL(14.3) PL(12.7) PL(15.3) PL(13.1) BRAR(10.4)
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3.2.6 Data Processing 

  All data were then interpolated so that the same angles could be compared 

between specimens.  To pair the muscle coordinate data with previously collected EMG 

data, nine positions of forearm rotation were chosen.  The angles included maximum 

pronation (MaxP), 75° of pronation (75P), 50° of pronation (50P), 25° of pronation (25P), 

neutral forearm position, 25° of supination (25S), 50° of supination (50S), 75° of 

supination (75S), and maximum supination (MaxS). 

 

3.2.7 Data Analysis 

When comparing forces at each angle, only the magnitude, not the direction of 

the force, was used.  This only affected the analysis in the shear direction because all 

other comparisons involved positive forces.  To determine whether there was a 

significant difference between DRUJ forces due to force direction, a repeated measures 

ANOVA was used to compare pronation efforts and supination efforts at the same 

forearm position.  Individual differences were determined by post-hoc analyses 

employing the Newman-Keuls test.   

 

3.3 Results 

 

Both pronation and supination shear forces exhibit a trend where they are 

largest (94N and 99.5N respectively) in pronated positions, decrease to their minimum 

in the positions of mid forearm rotation, and then increase again in the positions of 

supination (Fig. 3.4). The greatest magnitude average value of the shear force during 

pronation occurred at 75° of pronation, and the greatest value during supination 

occurred at MaxP (95N and 99.5N respectively).  The average magnitude for shear force 

was the smallest during pronation at the 50S position, and during supination it was 

smallest at the 25S position (7.9N and 12.5N respectively). There was no significant 

difference between shear forces during pronation or supination at any of the nine 

forearm positions.     
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Transverse forces during both pronation and supination tended to exhibit a 

pattern where the greatest transverse force was at neutral, and then the value 

decreased as the arm either pronated or supinated (Fig. 3.5). The largest average 

transverse forces occurred at the neutral position during pronation and supination 

(181.4N and 135.6N respectively).  For each of the nine forearm positions, the 

transverse forces observed during pronation were significantly larger than the forces 

seen during supination. 

Resultant force curves showed that the total force seen at the DRUJ during 

pronation was greatest from 50P to N and then decreased in both directions of rotation 

(Fig. 3.6).  During supination, the forces stayed relatively constant with a slight tendency 

to decrease from pronated to supinated positions.  The largest average resultant force 

for pronation and supination exercises were at 25P and N (190.60N and 138.1N) 

respectively.   A significant difference between pronation efforts and supination efforts 

was at every forearm position with the exception of MaxP.  

 

 
Figure 3.4.  Mean Absolute Value Shear Forces at the DRUJ ± SD 
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Figure 3.5.  Mean Transverse Forces at the DRUJ ± SD 

 

 
Figure 3.6.  Mean Resultant Forces at the DRUJ ± SD 
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3.4 Discussion 

 

3.4.1 Key Findings 

The results of this study affirm that compressive transverse forces pass from the 

radius to the ulnar head at all points of forearm rotation. In addition to large transverse 

forces, this study indicates that shear forces exist in the DRUJ.  These shear forces act to 

pull the radius away from the ulna in the AP direction and are large enough to be taken 

into consideration when examining potential treatment options.  These shear forces are 

greatest in pronation and least between neutral and 25° of supination.   

 

3.4.2 Comparison to Previous Findings 

Only two previous studies have examined forces in either the transverse or shear 

direction of the DRUJ.  Both of these studies relied on empirical data obtained from 

force transducers while the present study is an analytical model based on theory.  The 

first study utilized pressure sensitive film (172) while varying axial loads were applied to 

the forearm.  The results found that transverse loads across the DRUJ increase from 

pronation to supination while the present study found the opposite.   Differences in 

force trends may be because the forces in the present study are based solely on 

estimated muscle force data while the film study did not take muscle loading into 

consideration.  The second study utilized an instrumented ulnar head placed within 

cadaveric specimens in a joint simulator (67).  DRUJ loads for the simulator study were 

only reported at 40̊ of prona tion, 40̊  of supination and neutral.  ML, AP, and IS axis 

bending moments were reported in 20̊  increments. Differences in the results between 

the simulator study and the current study may come from the fact that muscle forces 

for 18 different sets of muscle origins and insertions were used in the current study 

while the simulator only utilized the forces from four muscles. 
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3.4.3 Clinical Relevance 

To maintain the biomechanical function of the forearm, maintaining the natural 

anatomy and function of the distal ulna is vital.  Compressive and longitudinal force 

transmission across the ulna can be demonstrated by the trabecular lines radiating 

perpendicular to the two articular facets of the ulnar head (13).  In clinical practice, the 

need for maintaining ulnar head anatomy can be seen from the mixed results (67) 

associated with procedures involving distal ulna resection such as the Darrach (47) or 

Sauve-Kapandji (165, 168).  The need for maintaining anatomy is further demonstrated 

by the loads at the DRUJ that are reported here.   The need for treatment methods 

maintaining ulnar anatomy has lead to procedures that attempt to restore the ulnar 

head.  Early results of these prosthetic replacements seem favorable (214). 

The results of this study indicate that instability splints should be placed around 

25° of supination to minimize shear.  Loading after distal ulna procedures should begin 

in significant pronation and supination to minimize the compressive transverse forces 

seen at neutral.  These data also suggest that plate fixation of the distal ulna should be 

in more than one plane.  In addition, arthroplasty and fracture system designs need to 

address these forces.  Resection of the ulna head should be avoided.  

 

3.4.4 Study Limitations and Potential Improvements  

Anatomy that was previously not taken into account, such as the radioulnar 

ligaments and the interosseous membrane, could be incorporated.  To get the most 

accurate data possible, in-vivo MRI data could be collected and digitally reconstructed.  

This would involve asking a subject to scan their arm at various stages of pronation-

supination and then analyzing the positions of the muscle origins and insertions.  A 

combination of in-vivo MRI data and the muscle force data reported here could also be 

used as the basis of a finite element model which can investigate DRUJ loading on a 

more localized scale.  For this project, data were only collected with the elbow flexed at 

90°.  However, analyzing EMG and cadaveric data at other positions of elbow flexion 

would provide additional information regarding the loads acting at the DRUJ.  Straight-
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line orientations from the muscle origin to the muscle insertion were utilized in this 

model, while factors such as muscle rapping were not taken into account.  Incorporating 

this kind of data would improve the accuracy of the orientation of muscle forces used.  

In addition, this model was a collection of static models used to obtain an overall picture 

of the DRUJ loading behavior.  A dynamic model utilizing cadaver data collected from a 

camera motion capture system while rotating the arm, as well as collecting dynamic 

EMG data, would be helpful in the advancement of DRUJ biomechanical knowledge.  

 

3.4.5 Conclusions 

Compressive transverse forces (ranging from 57.5N - 181.4N) are transmitted 

from the radius to the ulnar head at all points of forearm rotation, therefore, indicating 

a need for maintaining the ulnar anatomy.  Because these transverse forces are greatest 

at neutral (181.4N for pronation and 135.6N for supination), loading after distal ulna 

procedures should occur at the maximally pronated or maximally supinated position.  

Shear forces are least around 25° of supination (13.7N for pronation and 12N for 

supination), making that the orientation to place stability splints.  Forces at the DRUJ 

occur in more than one plane.  This should be considered when fixing fractured distal 

ulnae and designing implants pertaining to the DRUJ. 
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CHAPTER 4: THE ROLE OF INDIVIDUAL MUSCLES IN DRUJ LOADING AND FOREARM 

ROTATION 

 

NOTE: This chapter was written as a stand-alone manuscript to be submitted to the 

Journal of Hand Surgery at a later date. 

 

4.1 Introduction 

 

While understanding the forces at the DRUJ is important, understanding the role 

that individual muscles play contributing to those forces as well as the muscle behavior 

during forearm rotation is also important.  Clarifying the role that a particular muscles 

plays in DRUJ loading can help to determine which tendons can be transferred to 

different locations, which muscles are vital in maintaining proper function of the DRUJ 

and which muscles could be removed all together to allow for better outcomes when 

treating for DRUJ pathologies.  Muscle data collected over the course of this project 

including activity, length and contribution to DRUJ loading can all be combined to create 

a more in-depth view of the behavior of each muscle.  The purpose of this study was to 

determine the role that each of these muscles played, if any, in DRUJ and forearm 

biomechanics. 

 

4.2 Material and Methods 

 

All data obtained over the course of this project were examined for each muscle.  

The electromyographic (EMG) data are the same as reported in Chapter 2, and the 

muscle length was determined from the electromagnetic tracking data discussed in 

Chapter 3.  The length data are reported as a percent of the maximum length seen 

during forearm rotation for each subject and then averaged so that the length data can 

be comparable across subjects (Appendix D). 
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 To determine the role that an individual muscle played in DRUJ loading, the 

muscle was simply removed from the model reported in Chapter 3.  A comparison of the 

original model and the model with the muscle of interest removed is shown graphically 

in Appendix D.  Statistically, all muscles were compared to the intact model using 

repeated measures ANOVA and individual differences were determined through post-

hoc analyses employing the Newman-Keuls test.   

Positions at which the muscles were analyzed include maximum pronation 

(MaxP), 75° of pronation (75P), 50° of pronation (50P), 25° of pronation (25P), neutral 

(N), 25° of supination (25S), 50° of supination (50S), 75° of supination (75P), and 

maximum supination (MaxP).   The muscles analyzed include the abductor pollicis 

longus (APL), biceps brachii (BB), brachialis (BRA), brachioradialis (BRAR) , extensor carpi 

radialis brevis (ECRB), extensor carpi radialis longus (ECRL), extensor carpi ulnaris (ECU), 

extensor indicis (EI), extensor pollicis longus (EPL), flexor carpi radialis (FCR), flexor carpi 

ulnaris (FCU), palmaris longus (PL), pronator quadratus (PQ), pronator teres (PT), and 

the supinator (SUP).  

 

4.3 Results  

 

4.3.1 Overall Data 

 The overall trends of all the muscles are shown in Appendices A and B.  Table 4.1 

is shown as an example of the tables in Appendix A.  The tables represent the percent 

change caused when a muscle is removed to shear force, transverse force and resultant 

force both while pronating and while supinating.  Graphical representation of combined 

muscle contribution for the shear and transverse forces can be seen in Appendix B. 

Figure 4.1 is shown as an example.   Because resultant forces are quantitative and do 

not represent a direction, they do not add up to 100% and are not included in Appendix 

B.  Some of the key findings taken from the tables in Appendix A are shown in Table 4.2. 

Information regarding individual muscles extracted from the tables in Appendix A are in 

Appendix C.  Figures regarding each individual muscle including muscle length, EMG 
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activity, and its effect on DRUJ forces can be seen in Appendix D.  Additional information 

about muscle length and muscle location is shown in Table 4.3.   

 

 

Table 4.1. Muscle Contributions to DRUJ Shear Forces During Forearm Pronation 

This table is shown as an example of the tables presented in Appendix A.  Muscles which 

contributed to loading of the joint are black while muscles which acted to unload the 

joint are in red.  The number is the % change that removal of the muscle caused in the 

intact model.  Muscles are listed in order from the largest contributer of loading to the 

smallest contributer of loading (or unloading).  Cells which are shaded indicate a 

significant difference between the intact model forces and the forces observed when 

the muscle is removed.  

 

MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
1 SUP(28) SUP(24.3) FCR(23.8) FCR(30.2) FCR(48.2) PT(107.1) SUP(243.5) SUP(55.5) SUP(52)
2 ECU(19.6) PT(16.2) PT(20.4) PT(26.7) PT(42.9) FCR(85.6) APL(146.2) PQ(22.8) PQ(27.6)
3 EI(13.6) ECU(15) SUP(15.39) FCU(17.6) FCU(42) FCU(73.7) ECU(122.1) APL(18.3) APL(16.8)
4 PT(13.2) FCR(13.2) FCU(12.64) SUP(9.9) PL(12.9) ECRL(28.7) EPL(46.6) ECU(10) FCU(11.3)
5 ECRB(12.4) ECRB(12.1) ECRB(10.5) EI(9.2) EI(5.9) PL(22.8) ECRB(35.6) EPL(8.4) FCR(11.2)
6 FCR(9.4) FCU(11.4) ECU(9.22) PL(6.7) ECRL(5) BRAR(22.4) EI(22.2) FCR(8.3) EPL(6.7)
7 FCU(9.3) EI(10.7) EI(8.84) ECRB(5.5) BB(0.1) BRA(20.5) PQ(-10.7) FCU(8.1) PT(5)
8 EPL(7.3) EPL(6.4) EPL(5.02) ECU(3.9) ECRB(-0.9) BB(4) PL(-12.1) ECRB(3.6) PL(3.8)
9 APL(6.6) APL(6.3) PL(4.02) EPL(1.8) BRA(-1.8) EI(-2.9) BB(-18) EI(3.4) EI(2.4)
10 PL(2.2) PL(2.6) APL(3.23) PQ(1.5) BRAR(-2.9) PQ(-4.6) FCU(-21) PL(3) ECU(2.1)
11 ECRL(1.6) ECRL(0.9) PQ(1.67) ECRL(0.9) EPL(-4.6) ECRB(-17.1) FCR(-46.9) PT(-2) ECRB(-0.5)
12 BB(-0.6) BB(-1.5) ECRL(0.13) BB(-0.7) ECU(-7.5) EPL(-20.9) ECRL(-60) BB(-2.7) BB(-2.5)
13 BRAR(-6.2) PQ(-3.1) BB(-1.57) APL(-2.5) PQ(-9.3) ECU(-54.4) BRAR(-87.9) ECRL(-8.7) ECRL(-10.6)
14 BRA(-7.9) BRAR(-7) BRA(-6.5) BRA(-4.7) SUP(-12) APL(-68.9) BRA(-90.5) BRA(-13.8) BRA(-12.5)
15 PQ(-8.4) BRA(-7.4) BRAR(-6.8) BRAR(-6) APL(-17.9) SUP(-96.3) PT(-169.1) BRAR(-14) BRAR(-12.9)
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Figure 4.1. Muscle Effect on Transverse Forces During Pronation 

This figure shows the percent change that each muscle contributes to transverse DRUJ 

forces during pronation when the muscle is removed.  The positive and negative sides of 

the bars combine to equal 100% of the force observed at that particular position. 
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Table 4.2.  Muscle Trends and Characteristic 

Table 4.2 shows characteristics of each muscle that were extracted from Appendices A 

and C. The first six categories pertain to the number of situations where the muscle had 

a significant effect on the in-tact forces overall, during pronation, supination, shear 

forces, transverse forces and resultant forces.  The “Max.” and “Min.” categories refer 

to the number of times that a muscle had the largest positive or largest negative effect 

on the in-tact forces.  The “Max % Δ” category refers to absolute value of the largest 

percent difference that the muscle made.  “Mean % Δ” is an average of the absolute 

values of the change when the difference was statistically significant.  The top five 

muscles for each category are shaded. 

 

 
 

4.3.2 Muscle Ranking 

To rank the contribution that the fifteen muscles provided to DRUJ loading, a 

new metric was developed.  The goal of this metric was to determine the fewest 

muscles required to get 75% of the total force exhibited in the shear or transverse 

directions.  This was done both for the muscles which loaded the DRUJ and for the 

Total Pron. Sup. Shear Trans. Res.
APL 46 22 24 13 15 18 2 3 146.2 22.9
BB 22 0 22 8 5 9 0 18 44.9 16.3

BRA 19 16 3 6 4 9 0 10 90.5 10.3
BRAR 13 10 3 8 2 3 0 4 12.9 12.9
ECRB 26 12 14 6 9 11 0 0 16 9.7
ECRL 1 0 1 1 0 0 0 0 11.2 11.2
ECU 34 16 18 10 10 14 0 8 122.1 17.2

EI 31 16 15 7 10 14 0 0 13.6 7
EPL 36 17 19 5 13 18 0 0 23 8.3
FCR 36 19 17 12 9 15 3 0 85.6 15.2
FCU 31 17 14 13 9 9 2 6 114.8 18.8
PL 4 4 0 0 1 3 0 0 4 3.4
PQ 40 20 20 4 18 18 18 1 65.1 31.3
PT 32 21 11 9 10 13 1 1 169.1 17.4

SUP 53 26 27 17 18 18 29 1 243.5 39.6

# Times significant
Max. Min. Max %Δ Mean % Δ 
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muscles that exhibited force in the opposing direction.  The muscle forces in a particular 

direction were ranked in order from greatest to least magnitude for positive forces and 

negative forces.  The force provided by an individual muscle was added to the previous 

muscle until 75% of the positive and negative force exhibited by all the muscles was 

reached.  This analysis was done for transverse and shear forces during pronation and 

supination at each of the nine positions for a total of thirty-six plots which can be seen 

in Appendix E.  An example of one of the plots used in this analysis is shown in Figure 

4.2.  These plots were then used to rank the contribution of the muscles (Table 4.3). 

 

 
Figure 4.2. Mean Transverse Force Contributions during Supination at N 

The muscles providing a negative force are on the left side of the plot while the positive 

forces are on the right side of the plot.  The positive and negative forces are seperately 

ranked from the largest magnitude to smallest magnitude.  The force provided by each 

muscle is added to the sum of the muscle forces in the bar before it.  The horizontal blue 

line indicates 75% of the combined positive force of all muscles while the horizontal red 
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line indicates 75% of the combined negative force of all the muscles.  The total positive 

force is usually greater than 100% because the positive and negative forces combine to 

make the overall 100% force.  Therefore the lines do not occur at  75% of the total force, 

but 75% of the total positive and total negative force.  Green bars indicate that the 

muscle contributes to reaching the 75% mark.  Red and blue bars indicate that a muscle 

provides negative force and positive force, respectively but do not contribute to 

reaching 75% of the force.  To rank the muscles, the total number of times that a muscle 

contributed to reaching 75% of the force (green bars) as well as in individual sub-

categories were counted (Table 4.3) .   

 

Table 4.3. Overall Muscle Contribution Rankings 

This table shows the total number of times a muscle was counted as a contributor to 

DRUJ loading (0-36) as well as the amount it contributed to sub-categories. The top four 

muscles in each category are highlighted as well as their positions in the overall muscle 

contribution column. 

 
 

 

 

  

Muscle Frequency Muscle Frequency Muscle Frequency Muscle Frequency Muscle Frequency
SUP 36 SUP 18 SUP 18 SUP 18 SUP 18
APL 24 PT 14 BB 15 ECU 13 PQ 18
PQ 24 PQ 13 APL 14 FCR 12 APL 14
FCR 22 FCR 12 PQ 11 FCU 12 FCR 10
ECU 21 BRA 12 FCR 10 PT 11 BRA 10
BRA 20 BRAR 12 ECU 10 BRAR 11 PT 9
PT 20 ECU 11 FCU 9 APL 10 ECU 8

FCU 18 APL 10 BRA 8 BRA 10 BB 7
BRAR 17 FCU 9 ECRB 7 BB 8 FCU 6

BB 15 ECRB 5 PT 6 ECRL 7 BRAR 6
ECRB 12 ECRL 4 EPL 6 PQ 6 ECRB 6
EPL 8 EPL 2 BRAR 5 ECRB 6 EPL 6

ECRL 7 EI 2 ECRL 3 EI 3 ECRL 0
EI 3 BB 0 EI 1 EPL 2 EI 0
PL 0 PL 0 PL 0 PL 0 PL 0

Total Force Pronating Force Supinating Force Shear Force Transverse Force
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Table 4.4. Individual Muscle Properties 

When referring to the origins “(R)” indicates the radial origin, “(U)” indicates the ulnar 

origin and “(H)” indicates the humeral origin. 

 
 

 

4.4 Discussion   

 

4.4.1 Overview 

 The biomechanics of the forearm are complex.  Very few muscles contribute to 

DRUJ loading and forearm rotation under all circumstances.  Factors such as the position 

of forearm rotation, direction of forearm force, degree of elbow flexion, and whether 

the actions studied were static or dynamic all affect the role that individual  muscles 

play in forearm biomechanics.  This study examined fifteen muscles during isometric 

pronation and supination activities at pronated and supinated positions with the elbow 

Muscle Site of Origin Site of Insertion
Longest 
Position

Shortest 
Position

Shortest % 
of Maximum

APL
Posterier radius/ulna near the 
interosseous membrane Base of the 1st metacarpal

25P (R) 
MaxP(U)

50S (R) 
50S (U)

94.5% (R) 
95.1% (U) 

BB
Supralglenoid tubercle (long) and 
coracoid (short) of the shoulder

Bicipital tuberosity and lacertus 
fibrosus MaxP MaxS 92.3%

BRA Anterior Humerus Ulnar tuberosity 75S 50P 95.3%
BRAR Lateral supracondylar ridge Distal lateral radius MaxP N 93.7%
ECRB Lateral epicondyle ridge Base of the 3rd metacarpal N MaxP 97.8%
ECRL Lateral supracondylar ridge Base of the 2nd metacarpal MaxS N 97.8%
ECU Lateral epicondyle Base of the 5th metacarpal N MaxP 97.7%

EI
Posterior ulna near the 
interosseous membrane

Sagittal bands, central slip and 
distal phalanx of index finger N MaxP 96.4%

EPL
Posterior ulna near the 
interosseous membrane Base of thumb and distal phalanx 25P MaxP 96.0%

FCR Medial epicondyle of humerus Base of the 2nd and 3rd metacarpal 50P 50S 98.2%

FCU
Medial epicondyle of humerus and 
posterior ulna

Pisiform, hook of the hamate and 
the 5th metacarpal 25P 75S 96.6%

PL Medial epicondyle of humerus
Flexor retinaculum/palmar 
aponeurosis 75P 25S 97.7%

PQ Ulnar border of the distal ulna Anterior aspects of the distal radius MaxS MaxP 56.5%

PT
Medial epicondyle of the humerus 
and  coronoid of the ulna Lateral mid-radius

75P(H) 
MaxS(U)

MaxS(H) 
75P(U)

92.3% (H) 
92%(U)

SUP Posterior medial Ulna Proximal lateral radius N 75S 81.8%
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flexed at 90°.  Many conclusions can be drawn from these data which are shown in 

Appendices A-E.  In the following sections, the role of the individual muscles will be 

discussed based on the data provided in this chapter and the appendices, followed by a 

general discussion. 

 

4.4.2 Abductor Pollicis Longus 

Of the eight muscles that control the thumb, only the APL and APB directly 

connect to the thumb (29).  The APL is divided into distinct divisions and each division 

has a separate function (29), thus making the APL a complex muscle to analyze.  Most 

literature suggests that the primary movement of the APL is abduction and extension of 

the thumb (42, 53, 190).  The present study agrees with this and also shows that the APL 

is more active as the forearm supinates.  Note that this does not necessarily mean that 

the APL is a forearm supinator.  This assertion is because the present data were 

collected during a gripping exercise.  The act of gripping the handle may have activated 

the APL because the thumb was trying to extend during forearm supination but not 

during pronation.  Of the eight muscles that control the thumb, only the APL and APB 

are directly connected to the actual digit (29).   

Overall, the APL was one of the dominant players of forearm biomechanics and 

ranked among the top five muscles in nine of the ten categories chosen.  The APL 

generated more force in pronation and supination than every muscle except the SUP.  It 

also had the most significant contribution to generating the resultant DRUJ force (along 

with the EPL, PQ and SUP).  The APL was the second most influential muscle in overall 

DRUJ loading, the third most influential muscle during supination, and the third most 

influential muscle regarding transverse force. 

 

4.4.3 Biceps Brachii 

The role of the BB is to flex and supinate the forearm (53, 190, 197).  The present 

study confirms this as the BB was one of the most active muscles while supinating and 

was least active of the fifteen muscles during pronation.  Most BB EMG studies confirm 
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that the muscle is much more active while supinating than pronating (15, 40, 80, 85, 88, 

98, 147).  However, Taniguchi et al. (187) claim that the BB does not act as a supinator 

while the forearm is in a supinated position.   It was most active in mid-full supinated 

positions; however, the differences were not significant which is similar to the findings 

of Gordon et al. (80). O’Sullivan et al. found that the supinating signals were greatest at 

N and 75S (147).  There is a decline in activity level as the forearm approaches full 

pronation which agrees with the observations in other studies (16, 38, 80, 103, 135, 

141).  This decline may be because of the length-tension relationship which indicates 

that when a muscle is longer (the BB in pronation), less activity is required to achieve a 

given torque (31, 40, 80).  All movements of forceful supination against resistance 

require the cooperation of the biceps in varying degrees with the supinator (15, 16). 

The BB is considered one of primary rotators of the forearm along with the PT, 

PQ and SUP.  The BB was in the top five in only two of the ten chosen categories.  

However, it exhibited the largest unloading force on the DRUJ in eighteen instances.  It 

also had the third most instances of significant difference between the in-tact model 

and the BB-removed model during supination.  The BB is the tenth most influential 

muscle regarding overall DRUJ loads and the second most influential muscle regarding 

supinating force.   

 

4.4.4 Brachialis 

 It is widely accepted that the BRA is considered a flexor of the forearm (53, 190) 

at all positions because its line of action does not change as the forearm rotates (15).  

However, some researchers have noted that it may play a minor role in forearm 

pronation-supination as well (16, 36, 85, 147). The BRA was among the seven least 

active muscles during pronation at all positions and among the four least active during 

supination.  There was not a significant difference between pronation and supination 

activity at any position of forearm rotation.  The BRA exhibited the greatest activity 

during pronation and supination at 50S. Overall, the BRA is more active as the forearm 

pronates which agrees with other published findings (140, 141). 
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The BRA is among the top five in only one of the ten chosen categories.  It 

exhibited the largest amount of unloading influence on various DRUJ forces in ten 

instances.  The BB is the only muscle with more influence in this aspect.  The BRA is the 

sixth most influential muscle in overall DRUJ loading, the fourth most influential 

regarding pronating force and the fourth most influential regarding transverse force. 

 

4.4.5 Brachioradialis 

 There is a great deal of variety in the literature when determining the role of the 

BRAR.  Most references agree that the BRAR acts as a forearm flexor (53, 190), but the 

other roles of the muscle are disputed.  Basmajian claims that it is a pronator of the 

supine forearm and supinator of the prone forearm in resisted movements only (15).  

Other studies agree that it acts as both a pronator and a supinator (28, 36, 85, 147)  

Gielen et al. state that during pronation, the BRAR motor units receive no input (68).  

Yet, others claim that the muscle produces no signal during pronation or supination (49, 

197).  The EMG data in the present study suggest that the BRAR is more active as a 

pronator than a supinator.  Several other studies have also found that the BRAR is more 

active as a pronator than as a supinator (24, 98, 140, 141).   

Overall, the BRAR was among the top five muscles in only one category of the 

ten chosen categories.  It was the largest unloader of the DRUJ in four different 

instances.  The BRAR was the ninth most influential DRUJ load contributor overall and it 

had the fourth largest effect on pronating force. 

 

4.4.6 Extensor Carpi Radialis Brevis 

 The primary role of the ECRB is wrist extension and radial deviation (28, 53, 190).  

The ECRB was in the bottom half of active muscles during pronation except at 50P.  

During supination it was in the bottom half at all positions and least active at 50S, 75S 

and MaxS.  There was not a significant difference between pronating and supinating 

ECRB activity at any position of forearm rotation.  The ECRB exhibited the greatest 

activity during pronation at N and during supination at MaxP.  
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The ECRB was one of only three muscles that was not among the top five in any 

of the ten chosen categories.  However, it did exhibit significant influence on loads at 

the DRUJ in twenty-six instances.  Overall, the ECRB was the fourth least influential 

muscle on DRUJ loading and was not among the four most influential muscles in any 

sub-category. 

 

4.4.7 Extensor Carpi Radialis Longus 

 The primary purpose of the ECRL is to extend and abduct the wrist (28, 53, 190).  

There was not a significant difference between pronation and supination ECRL activity at 

any position of forearm rotation.  The ECRL exhibited the greatest activity during 

pronation at 25P and during supination at neutral.  Fujii et al. (58) suggest that forearm 

supination from the prone position should be added to one of the actions of the ECRL.  

The data from the current study agree with this because the supination activity is 

greater in pronated positions than in supinated positions, even though these differences 

are not statistically significant.   

The ECRL was among the least influential muscles on DRUJ loading of any of the 

muscles that were studied.  The ECRL was not among the top five muscles of any of the 

ten chosen categories and only exhibited significant influence on DRUJ loads in one of 

the fifty-four instances studied.    The ECRL was the third least influential muscle on 

DRUJ loading and was not among the four most influential muscles in any sub-category. 

 

4.4.8 Extensor Carpi Ulnaris 

The primary role of the ECU is flexion and ulnar deviation of the wrist (28, 53, 

190).  However, Garcia et al. (64) report slight to marked action potentials in subjects 

while pronation is performed against resistance.  There was not a significant difference 

between pronation and supination ECU activity at any position of forearm rotation.  The 

ECU may also help to initiate pronation and supination at the extremes of forearm 

rotation.  The ECU exhibited the greatest pronation activity at MaxS and during 

supination at MaxP.   Haugstvedt et al. (85)  and Nathan (143) report that the ECU  and 
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FCU generate a potential pronating torque with the forearm in maximum supination and 

to a lesser extent, a potential supination torque while the forearm is in maximal 

pronation.  The present study seems to agree with their findings. These findings also 

agree with the assertion from Haugstvedt et al. (85), that the ECU and FCU may be 

responsible for initiating pronation from the maximally supinated position. 

The ECU was ranked among the top five muscles in five of the ten categories 

chosen.  It was the largest unloader of DRUJ forces in eight instances.  The ECU was the 

fifth most influential DRUJ loader overall and was the second most influential muscle 

regarding shear forces. 

 

4.4.9 Extensor Indicis 

 The primary purpose of the EI is to extend the index finger (28, 53, 190).  

However, a study by Nathan (143) showed that the EI has the potential to generate 

pronation torque in supinated positions.  There was not a significant difference between 

pronation and supination EI activity at any position of forearm rotation.  The EI exhibited 

the greatest activity during pronation at 25P and during supination at 50S.   

The EI was among the top five muscles in only one of the ten chosen categories.  

It was among the top transverse force loaders and exhibited significant loading in thirty-

one instances.  Overall, the EI was the second least influential muscle in DRUJ loading. 

 

4.4.10 Extensor Pollicis Longus 

The primary role of the EPL is extension and adduction of the thumb (15, 42, 

190).  It produces extension of the IP, MCP joints (28, 53, 127) and also  has an 

adduction moment at the TM joint (121).  It also assists the abductor muscles in 

repositioning or spreading the thumb out widely so that it can grasp large objects (15) as 

well as adduct and extend the CMC joint (28).  There was not a significant difference 

between pronation and supination EPL activity at any position of forearm rotation.  The 

EIP exhibited the greatest activity during pronation at 50P and during supination at 50S.   
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The EPL significantly increased shear forces only at the extremes of forearm 

rotation while it increased the transverse forces at supinated and mid-rotation 

positions.  The EPL was a significant resultant force loader of the DRUJ at every position 

of forearm rotation both while pronating and while supinating.  It was also among the 

top five muscles in five of the ten chosen categories.  The EPL was one of the four 

muscles that significantly affected resultant forces in eighteen instances.  It was also 

among the top influences in total loading, loading during pronation, loading during 

supination and loading of transverse force.  However, overall, the EPL was the fourth 

least influential DRUJ loader. 

 

4.4.11 Flexor Carpi Radialis 

The primary role of the FCR is flexion and radial deviation of the wrist (28, 53, 

190).  FCR activity was significantly greater in pronation than supination at N, 25S, 50S 

and MaxS.  The FCR exhibited the greatest activity during pronation at MaxS and during 

supination at 50P.   

The FCR was among the top five muscles in five of the ten chosen categories.  It 

was the largest loader of the DRUJ in three instances and had one of the larger 

influences in overall DRUJ loads, pronating, shear and resultant loads.  Overall, the FCR 

was the fourth most influential muscle in DRUJ loading, the fourth most influential 

muscle during pronation, the third most influential muscle regarding shear forces and 

the fourth most influential muscle regarding transverse forces.   

 

4.4.12 Flexor Carpi Ulnaris 

The primary role of the FCU is flexion and ulnar deviation of the wrist (28, 53, 

190).  However Garcia et al. (64) report slight to marked action potentials in subjects 

while pronation is performed against resistance.  There was not a significant difference 

between pronation and supination FCU activity at any position of forearm rotation.  The 

FCU exhibited the greatest pronation activity at MaxS and supination activity at MaxP.   
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The FCU was ranked among the top five muscles in six of the ten categories 

chosen.  It had one of top percentages of change in DRUJ loading as an overall average 

as well as in a single instance.  It was among the most influential muscles regarding 

pronating and shear loads.  It exhibited the largest loading effect on the DRUJ in two 

instances and unloading effect in six.  The FCU was the eighth most influential muscle in 

overall DRUJ loading and the fourth most influential muscle in shear loading. 

 

4.4.13 Palmaris Longus 

The primary role of the PL is wrist flexion and neutral deviation (28, 53, 190).  

Nathan reports that the PL generates torque in the pronation direction while the 

forearm is in supinated positions and in the supination direction while the forearm is in 

pronated positions (143).  PL pronation activity was significantly larger than supinating 

activity all positions from 25P-MaxS.  The PL exhibited the greatest pronation activity at 

75S and the greatest supination activity at 75P.  Overall, PL activity is significantly 

greater during forearm pronation than in supination.   

The PL was among the least influential muscles on DRUJ loading.  It was not 

among the top five muscles in any of the ten chosen categories and exhibited significant 

influence on the DRUJ in only four of the fifty-four possible instances.  Overall, the PL is 

the single least influential muscle in DRUJ loading and was not found among the muscles 

accounting for 75% of the load in any sub-category. 

 

4.4.14 Pronator Quadratus 

The primary action of the PQ is to pronate the forearm (28, 53, 190).  The PQ 

exhibited significantly greater activity during pronation than during supination at each 

of the forearm positions.  During pronation, the PQ exhibited the greatest activity at 75P 

and during supination at Neutral.  Overall, the PQ is more active as the forearm 

pronates which agrees with the findings of other studies (80, 147).  A number of studies 

say that the PQ is a pronator only, and there is little to no activity in the early stages of 
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pronation (15, 49).  The current study shows that while pronating activity was smallest 

at full supination, it was not significantly less than other positions.  

The PQ was among the most influential muscles on DRUJ loading that was 

studied.  It was among the top five most influential muscles in seven of the ten 

categories chosen.  The PQ was the third most influential muscle overall, the third most 

influential muscle during pronation, the fourth most influential muscle during 

supination and the second most influential muscle regarding transverse force.    

 

4.4.15 Pronator Teres 

The primary actions of the PT are to pronate (53) and flex (190, 197) the 

forearm.  The PT exhibited significantly greater activity during pronation than during 

supination at each of the forearm positions.  The PT exhibited the greatest activity 

during both pronation and supination at 50S.  Overall, the PT is more active as the 

forearm pronates which is consistent with other studies (80).  During pronation, the PQ 

is significantly more active than the PT.  Based on muscle activity alone, Basmajian et al. 

(15) and Haugstvedt et al. (85) suggest that the PQ is the more dominant agonist during 

forearm pronation and that the PT is called in as a reinforcing muscle to the PQ during 

resisted torques.  The Gordon study (80) also shows that the PQ activity level is higher 

than that of the PT; however, they claim that the PT is the primary agonist when other 

factors are considered such as moment arm and PCSA.  Haugstvedt et al. (85) claim that 

the PQ and PT do not generate torque in the maximally supinated positions and that the 

potential of the ECU and FCU may be responsible for initiation pronation from that 

position.  However, the current study shows that both muscles exhibit activity at full 

supination. 

While the PT is considered to be one of the primary rotators of the forearm, the 

only category of the ten chosen in which it was among the top five muscles was the 

largest single percent change in DRUJ loading.  However, it was the largest loader and 

unloader once and significantly affected DRUJ loading in thirty-two instances.  Overall, 
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the PT was the seventh most influential muscle in DRUJ loading and had the second 

largest effect on pronating force. 

 

4.4.16 Supinator 

The primary action of the SUP is to supinate the forearm (53, 190); however, 

there were no significant differences in SUP activity between directions at the same 

forearm position.  During forearm pronation, the SUP exhibited the greatest activity at 

75S and during supination at Neutral.  Overall, the SUP is more active as the forearm 

supinates than as it pronates.  Two studies (15, 68) found that the SUP is not active 

during pronation at all. Conversely, the present study found that SUP supination activity 

was larger than the pronation activity at all tested positions; however, these differences 

were not significant and agree with the results found in other studies (80).  The largest 

SUP activity occurs around midrange of forearm rotation which is different than the 

results from Gordon et al. (80) who found that activity was higher in full supination 

compared to neutral-full pronation.  However, Gordon did find that the activity level in 

full pronation was greater compared to full supination which is consistent with the 

findings of the present study. Other EMG studies have found that the overall activity 

level of the SUP was greater than that of the biceps, indicating that the SUP was the 

primary agonist during supination (15, 85).  Based on EMG data alone, this study has 

found that that the ECU and BB are more active in pronated and supinated positions 

respectively than the SUP.  This finding somewhat agrees with the Gordon study which 

claims that even though their EMG results indicated more activity for the SUP compared 

to the BB, the BB is the more influential agonist when anatomic factors such moment 

arms and PCSA are taken into account.   

The SUP was the most influential muscle on DRUJ loads observed in this study.  It 

was highlighted in nine of the ten chosen categories.  It has the largest average percent 

force change as well as the largest single instance of change.  It is also the single most 

influential muscle in each of those nine categories.  The SUP was the most influential 

muscle on DRUJ loading overall and in each of the four ranked sub-categories. 
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4.4.17 General Discussion  

It has been widely accepted that the primary pronators of the forearm are the 

pronator teres and pronator quadratus while the primary supinators are the biceps 

brachii and supinator (15, 85, 148, 215).  However, their role in loading of the DRUJ as 

well as the other muscles examined is not clearly understood.  The SUP played a 

significant role in loading the DRUJ during supination and pronation for shear, 

transverse and resultant forces and was the largest loading muscle at every forearm 

position for supinating shear and transverse forces.  The BB acted as a significant 

unloader of the supinating DRUJ for shear, transverse and resultant forces.  It was the 

largest unloader of the resultant forces during supination at every position of forearm 

rotation.  During pronation it acted to unload the DRUJ, but the effect was not 

significant for any kind of force at any position and was ranked as only the tenth most 

influential DRUJ loader.  The PQ was the largest transverse and resultant force loader 

during pronation at all forearm positions and had a significant effect on shear forces at 2 

positions.  The PQ was also a significant loader of transverse and resultant forces during 

supination; however, it played no significant role in supinating shear forces.  The PQ was 

the largest unloader of pronating shear forces at MaxP, even though the effect was not 

considered significant.  Overall, the PQ was the third most influential muscle regarding 

DRUJ loading and was among the four most influential muscles forces during pronation, 

during supination and transverse force.  The PT was a significant loader during shear 

pronation at pronated positions and neutral, while during supination, it was significant 

at only two positions.  During pronation, shear forces were significantly affected at 

supinated positions, neutral and 25P while during supination, they were affected at all 

supinated positions.  It was a significant resultant loader at all positions except MaxP 

during pronation, and during supination, it was significant at neutral and supinated 

positions.  The PT was the only primary forearm rotator that was not the largest loader 

or largest unloader of the DRUJ at any point.  Overall, the PT was the seventh most 
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influential muscle on DRUJ and was only among the top four muscles affecting pronating 

force. 

This study demonstrated that muscles other than the primary four pronators and 

supinators of the forearm had an effect on loads at the DRUJ.  Muscles that exhibited 

the greatest loading effect at any instance included the APL, FCR, FCU in addition to the 

PQ and SUP.  Muscles that exhibited the greatest unloading effect included the APL, 

BRA, BRAR, ECU, and FCU in addition to all four of the primary forearm rotators.  The 

top four most influential muscles in pronating force are the SUP, PT, PQ, FCR, BRA, and 

BRAR (FCR, BRA and BRAR tied for fourth most influential).  The most influential muscles 

in supinating force were the SUP, BB, APL and PQ.  The most influential shear force 

muscles were the SUP, ECU, FCR and FCU.  The most influential transverse force muscles 

were the SUP, PQ, APL, FCR, and BRA (FCR and BRA tied for fourth most influential).  All 

of these muscles make up the ten overall most influential muscles of the fifteen studied. 

Even though all muscles were found to significantly affect DRUJ forces in at least 

one instance, some proved to have an overall minimal effect.  The three muscles that 

were not among the top five in any of the chosen categories included the ECRB, ECRL, 

and the PL.   Overall, the ECRB, EPL, ECRL, EI, and PL were the five least influential 

muscles and were not seen among the top four muscles in any sub-category. 

 

4.4.18 Study Conclusions 

 The role that individual muscles play during forearm rotation and the 

relationship they have to loads at the DRUJ are complex.  Classically, the PT, PQ, SUP, 

and BB are considered the primary rotators and contributors to DRUJ loading.  The 

present findings support the claim that these are influential muscles.    All of the muscles 

studied here demonstrated that they significantly affect the DRUJ in some way.  The 

muscles that exhibited the largest loading or unloading role at any single instance 

included the APL, BB, BRA, BRAR, ECU, FCU, PQ, PT, and SUP.   The muscles that were 

among the four most influential in any sub-category included the SUP, APL, PQ, FCR, 

ECU, BRA, PT, FCU, BRAR, and BB (the ten most influential muscles overall).  The 
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accuracy of future analytical and experimental models of the DRUJ as well as the 

forearm can be improved.  Incorporating these ten muscles will help to improve that 

accuracy.   
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CHAPTER 5: OVERALL DISCUSSION AND CONCLUSIONS 

 

5.1 Key Findings 

 

The EMG portion of this study found that the BRAR, FCR, PL, and APL contribute 

significantly to forearm pronation and supination along with the previously recognized 

major contributions of the PQ, PT, SUP, and BB.  The results of the in-tact DRUJ 

mathematical model affirm that compressive forces pass from the radius to the ulnar 

head at all points of forearm rotation. In addition to large compressive forces, this study 

indicates that shear forces exist in the DRUJ.  These shear forces act to pull the radius 

away from the ulna in the AP direction and are large enough to be taken into 

consideration when examining potential treatment options.  These shear forces are 

greatest in pronation and least between N and 25° of supination.  The individual muscle 

analysis portion of this study found that of the fifteen muscles analyzed, ten had a major 

effect on forearm and DRUJ biomechanics.  Other than the classic primary forearm 

rotators (PQ, PT, SUP, BB), the top ten most influential muscles included the APL, FCR, 

ECU, BRA, FCU, and BRAR.   

 

5.2 Discussion 

 

5.2.1 EMG Study 

Prior to this research, a comprehensive set of indwelling EMG data that 

contained each of the forearm muscles thought to affect forearm rotation and DRUJ 

loading throughout the range of forearm rotation during isometric supination and 

pronation did not exist.  The previous study that was closest to what was needed for this 

research examined the PQ, PT, SUP, and BB at five positions of forearm rotation (80).  

Understanding muscle activity during isometric exertion is a key step needed to 
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determine muscle forces and the role those forces play in DRUJ loading.  Expanding the 

knowledge base about muscle activity to fifteen muscles and to nine forearm positions 

was a key contribution to the understanding of forearm biomechanics.   

The EMG analysis found that BB activity was significantly greater during 

supination than during pronation at each of the nine positions examined.  The BRAR 

activity was significantly greater during pronation at 25S, 50S, 75S, and MaxS.  Pronating 

FCR activity was significantly greater than supinating activity at N, 25S, 50S, 75S, and 

MaxS. Pronating PL activity was significantly greater than supinating activity at 25P, N, 

25S, 50S, 75S, and MaxS.  Both PQ and PT activity were significantly greater during 

pronation than in supination each of the nine positions.  The APL, BB, and SUP were 

found to have overall significantly greater muscle activity during supination while the 

BRA, BRAR, ECRL, FCR, PL, PQ, and PT exhibited significantly greater overall pronation 

activity.  Muscles that were among the top three most active during pronation at any 

position included the PQ, PT, EIP, ECU, FCR, and PL.  During supination, the top three 

most active muscles at all positions included the ECU, SUP, BB, and APL.  The new 

information contributed by the EMG study found that other than the PQ, PT, BB, and 

SUP, that the BRAR, FCR, and PL made a significant contribution to pronation while the 

APL made a significant contribution to supination.  Based on EMG analysis alone, this 

study determined that the BRA, ECRB, ECRL, ECU, EIP, EPL, or FCU had neither an overall 

pronating effect nor supinating effect.  

 

5.2.2 In-tact DRUJ Loading Model 

The in-tact model portion of this study found that shear forces at the DRUJ range 

between 18.6N and 99.5N, are lowest at neutral and 25S and increase as the forearm 

pronates and supinates.  The transverse forces range between 57.5N and 181.4N.  These 

compressive forces are greatest at mid-rotation and decrease as the arm rotates in 

either direction both while pronating or supinating.  The pronating transverse forces 

were significantly greater than the supinating transverse force.  Resultant forces ranged 

between 84.5N and 190.6N and were greatest between 50P and N.  The pronation 



71 
 

resultant forces were significantly greater than the supination resultant forces at every 

position except MaxP. 

Only two previous studies have examined forces in either the transverse or shear 

direction of the DRUJ.  Both of these studies relied on empirical data obtained from 

force transducers while the present study is an analytical model based on theory.  The 

first study utilized pressure sensitive film (172) while varying axial loads were applied to 

the forearm.  The results found that transverse loads across the DRUJ increase from 

pronation to supination while the present study found the opposite.  Differences in 

force trends may be because the forces in the present study are based solely on 

estimated muscle force data while the film study did not take muscle loading into 

consideration.  The second study utilized an instrumented ulnar head placed within 

cadaveric specimens in a joint simulator (67).  DRUJ loads for the simulator study were 

only reported at 40̊ of pronation, 40˚ of supination and neutral.  ML, AP, and IS axis 

bending moments were reported in 20̊  increments. Differences in the results between 

the simulator study and the current study may come from the fact that muscle forces 

for eighteen different sets of muscle origins and insertions were used in the current 

study while the simulator only utilized the forces from four muscles. 

 

5.2.3 Individual Muscle Roles 

This study demonstrated that muscles other than the primary four rotators of 

the forearm had a significant impact on loads seen at the DRUJ.  The most influential 

muscles regarding force during pronation included the SUP, PT, PQ, FCR, BRA, and BRAR.  

During supination, the muscles with the most influence included the SUP, BB, APL, and 

PQ.  Shear forces were influenced the most by the SUP, ECU, FCR, and FCU.  The muscles 

with the largest effect on transverse force included the SUP, PQ, APL, FCR, and BRA.  All 

of these muscles account for the ten most influential muscles in DRUJ loading.  The 

muscles that were not among the top four contributors in any sub-category and were 

the least influential overall included the PL, EI, ECRL, EPL, and ECRB. 
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5.2.4 Overall Discussion 

When looking at the overall muscle effect on the DRUJ model, the major 

contributors based on EMG data were the PQ, PT, BB, SUP, BRAR, FCR, PL, and APL.  

Based on removing the muscles from the in-tact model, the major contributors were the 

SUP, APL, PQ, FCR, ECU, BRA, PT, FCU, BRAR, and BB.  The PL is the only muscle to be 

found significant in the EMG portion of the study but not in the muscle analysis portion.   

The EMG activity showed it to be an active pronator.  However, the force generating 

capability of the PL was the second smallest of all the muscles next to the EI.  The BRA, 

ECU, and the FCU were all listed as major DRUJ loaders based on the model analysis, but 

not on the EMG analysis.  The BRA only met one of the three criteria to be classified as a 

contributor to forearm rotation based on EMG activity.  However, the BRA had the sixth 

largest force generating potential which made it a significant DRUJ unloader.  The ECU 

had the third largest force generating capacity while the FCU had the second largest.  

This allowed for a significant contribution to DRUJ forces from both even though the 

EMG muscle activity was not regarded as significant.    

 

5.3 Limitations 

 

5.3.1 EMG Study 

When using EMG to analyze muscle function, a number of limitations must be 

taken into consideration.  This study used a gripping exercise to measure muscle effects 

during pronation and supination.  Pure forearm rotation in the absence of gripping (80), 

may better represent true pronation and supination, but rarely is this forearm motion 

performed with an unloaded hand.  Although muscular isometric force capacity is 

directly related to the number of motor units activated (36),  motor unit and muscle 

activation is not homogeneous across all subjects (135) .  In addition, it has been found 

that that the combination of multiple functional tasks may induce a larger activation 

than what is seen in an individual motion (35).  This would indicate that the published 

maximum voluntary isometric exercises (106)  used to obtain a maximum activity level 
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may not have actually provided a true maximum signal. This phenomenon was observed 

in the EMG data collected for the APL.  The primary function of the APL is abduction and 

extension of the thumb (42, 53, 190).  Gripping the handle while supinating would have 

activated the APL because the thumb was trying to extend; this did not occur during 

pronation. As a result, using MVIC as the maximum scaling factor gave APL data that 

were greater than 100% during supination.  This is the rationale for normalizing the 

EMG data by the largest value observed instead of just the MVIC exercises.  It should 

also be noted that muscles are not activated homogeneously (197) and that the 

particular motor units being measured by the indwelling electrodes may not be 

representative of the activity of the muscle as a whole.  Because other studies have 

found that elbow position affects torque (59, 68, 147, 215), the present findings may be 

limited to horizontal forearms with elbows flexed at a right angle.  This study used 

eleven subjects per muscle.  Because each individual recruits and activates the muscles 

differently, there is a large standard deviation in the data collected between subjects, 

and is typical for EMG studies.   

 Generally, the muscle with the greatest mechanical advantage receives the 

largest input (195).  The mechanical advantage of muscles that pronate and supinate the 

forearm change greatly as the external axis of rotation changes (38).  When the elbow is 

flexed, pronation and supination occur because of the muscles acting on the radio-ulnar 

joints, and when it is extended, the rotator muscles of the scapulo-humeral joints are 

called into action (45).  Therefore an angle of 90° of elbow flexion was chosen because 

flexion tends to use the forearm pronators and supinators more than elbow extension 

and the torque values are supposedly higher in flexion.  Hence, the data reported here 

are only relevant when the forearm is flexed at 90° and not when the forearm is 

extended. 

 

5.3.2 DRUJ Force Model and Muscle Analysis 

A number of limitations should be taken into consideration for the analytical 

portion of this research as well.  This analysis of DRUJ forces only incorporated muscle 
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loading.  Loads from other soft tissue structures such as the radioulnar ligaments and 

the interosseous membrane were not taken into consideration.  Straight-line 

orientations from the muscle origin to the muscle insertion were utilized in this model 

while factors such as muscle wrapping were ignored.  In addition, because isometric 

forces were being examined, constant force was assumed for each muscle, and effects, 

such as stretching, were not taken into consideration.  As in the EMG study, the model 

only examines DRUJ forces with the elbow flexed at 90°.  Additionally, this model is 

comprised of a series of static models over the range of forearm rotation in order to 

give an idea of the trends at different forearm positions.  This model is not a dynamic 

model, and, therefore, does not take the Newtonian equations into consideration, nor 

does it consider the change in muscle tension that would be observed by using the Hill 

muscle model.  The PCSA data used for most of the muscles were from a set of 5 

different forearms from elderly cadavers.  The age of the cadavers can affect the muscle 

volume for the PCSA calculation as could the small sample size of the forearms used.  

The EMG data were collected on young healthy subjects, so the pairing of the two sets 

of data is not ideal.  Current technology can be used to find the PCSA in living subjects 

through the use of MRI or ultrasound (33).  The cadaveric muscle orientation data were 

collected at 10° increments before the EMG protocol had been developed.  Due to the 

amount of time involved in collecting the EMG data for each subject, a decision was 

made to collect the data at nine forearm positions.  Because the two data sets did not 

match, the cadaver data had to be interpolated and, therefore, did not match the exact 

coordinates that were collected.  The muscle scaling factor of 3.6 kg/cm2 was used 

because it was a commonly used number and was roughly around the middle of the 

range of the other numbers used.  The magnitudes from this model are dependent on 

this scaling factor; however, the resulting trends are not and would not change based on 

the scaling factor used as long as it was the same for all fifteen muscles.  Actual muscle 

origins and insertions are not single points but cover relatively large amounts of the 

bone surface area in irregular shapes and thicknesses.  Muscle origins and insertions 
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were chosen as a single point based on visual inspection of the approximate center of 

the origin and insertion.   

 

 

5.4 Clinical Implications 

 

In order to maintain the biomechanical function of the forearm, preserving the 

natural anatomy and function of the distal ulna is vital.  Compressive and longitudinal 

force transmission across the ulna can be demonstrated by the trabecular lines radiating 

perpendicular to the two articular facets of the ulnar head (13).  In clinical practice, the 

need for maintaining ulnar head anatomy can be seen from the mixed results (67) 

associated with procedures involving distal ulna resection such as the Darrach (47) or 

Sauve-Kapandji (165, 168).  The need for maintaining anatomy is further demonstrated 

by the loads at the DRUJ that are reported here.   The need for treatment methods that 

maintain the ulnar anatomy has led to procedures that attempt to restore the ulnar 

head.  Early results of these prosthetic replacements seem favorable (214). 

The results of the in-tact loading portion of this research indicate that instability 

splints should be placed around 25° of supination to minimize shear.  Loading after 

distal ulna procedures should begin in significant pronation and supination to minimize 

the compressive forces seen at neutral.  The data also suggest that plate fixation of the 

distal ulna should be in more than one plane.  In addition, arthroplasty and fracture 

system designs need to address these forces.  Resection of the ulna head should be 

avoided.  

 The individual muscle loading portion of this study found that ten of the fifteen 

muscles examined were needed to make up 75% of the forces seen in the in-tact 

forearm.  Therefore it is important to maintain the function of these ten muscles and to 

keep them in-tact if possible.  Five muscles were found to have minimal influence and, 

as far as the DRUJ is concerned, could be sacrificed while still maintaining most of the 

function of the joint. 
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5.5 Conclusions 

 

Based on the results of this research it can be concluded that: 

I. EMG data indicate that the PQ, PT, BRAR, FCR, and PL contribute to forearm 

pronation. 

II. EMG data indicate that the BB, SUP, and APL contribute to forearm supination. 

III. DRUJ shear forces are least between mid rotation and early supination and greatest 

at the two most pronated positions. 

IV. DRUJ transverse forces are greatest at mid-rotation and decrease as the arm rotates 

in either direction.  

V. Pronating transverse forces at the DRUJ are significantly greater than supinating 

transverse forces at all positions of forearm rotation. 

VI. DRUJ resultant forces are greatest at neutral and mid-pronation 

VII. Pronating resultant forces at the DRUJ are significantly greater than supinating 

resultant forces at all forearm positions except maximum pronation 

VIII. ECRB, EPL, ECRL, EI, and PL had minimal impact on DRUJ loading   

IX. Muscles other than the PQ, PT, BB, and SUP significantly affect DRUJ loading during 

isometric forearm rotation. 

 

5.6 Future Research 

 

 Simply changing some of the variables of the current research could yield some 

potentially useful information regarding forearm biomechanics.  EMG and cadaver data 

could be collected at elbow angles other than 90°.  A larger number of subjects could be 

used.  Orientation data could be collected on more cadaveric specimens.  Some of the 

forearm muscles that were not analyzed in this project such as the extensor pollicis 

brevis or the flexor digitorum sublimis could be investigated.  Also, the sites of key soft 
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tissue structures such as ligaments could be marked and included in the study based on 

published tension properties  (51, 175). 

The current study could be improved by a number of factors.  More accurate 

PCSA could be obtained from healthy living subjects using MRI or ultrasound (33).  

Muscle origin and insertion data could be improved by obtaining MRI scans at different 

forearm positions and digitally reconstructing the bones using software such as Amira 

(Mercury Computer Systems/3D Viz group, San Diego, CA).  The origins and insertions of 

each muscle could then be individually reconstructed to find the area of the bone that is 

the true origin or insertion.  An algorithm could then be used to find the geometric 

center of the actual origin or insertion.  This same technique could also be used locate 

the connection points for other soft tissue structures, such as ligaments and the 

interosseous membrane.  Theoretically, the MRI, EMG and even the PCSA data could all 

be collected from the same subject and would eliminate the problem of combining 

datasets that are not ideally matched.   

A number of finite element analysis (FEA) models have been developed to look 

at various characteristics of the wrist and distal forearm (10, 11, 37, 69, 134, 149, 193).  

Some of the techniques applied in those models could be adapted to a distal forearm 

model that would yield more insight into how loads are transmitted to the distal radius 

and ulna.  Once the MRI scans have been processed and the muscle origins and 

insertions have been digitally marked, the groundwork will have been laid for the 

development of such a model.  The 3D model of a particular bone orientation would be 

converted into a mesh model suitable for FEM analysis.  The model would then be 

imported into a FEA package such as ANSYS (ANSYS Corporation, Pigboat, PA).  Material 

properties of healthy cortical bone could then be applied to all of the surfaces (56, 138).  

Constraints representing the ligaments could then be modeled using spring elements 

(37).  Spring stiffness would be determined by published wrist ligament (20, 169) and 

distal radio-ulnar ligament (51, 175) data.  Directional forces would be placed into the 

model representing muscle forces.  The magnitude could come from the data presented 

here and the direction could come from the digitally marked origins and insertions.  In 
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FEM analysis, the muscle origins and insertions would not necessarily have to be a single 

point.  Instead they could be composed of multiple forces at multiple locations 

representing the true origin or insertion site and direction instead.  This particular 

technique would also prove to be beneficial because, even though the distance from the 

origin to the insertion is a straight line, the muscle does not necessarily follow that 

straight line.  In vivo muscle orientation data could be used to apply more accurate force 

directions for the muscles.  In developing an accurate FEM model for the normal 

forearm, there are several other factors which could be included.  The triangular 

fibrocartilage complex (TFCC) plays a significant role in axial loading in the forearm 

(153).  The TFCC could be reconstructed in a manner similar to that of the muscle 

insertions and placed into the model, or elements with the same mechanical properties 

could be included.  Cartilage at the DRUJ interface may also affect load transfer across 

the joint.  Cartilage could be reconstructed from the MRI scans or it could be modeled 

by applying its mechanical properties to the articulations between the solid bone 

interfaces (37).  Another factor that could possibly affect load transfer in the arm is the 

interosseous membrane (23, 83, 129, 157).  It could be modeled as a ligament based on 

its mechanical properties (158) and its effect on forearm load transfer could be 

quantified.  Once a satisfactory model of the normal human forearm has been created, a 

variety of conditions can be applied to compare the effect on the loads at the DRUJ.  

Osteoporosis can be simulated by changing the mechanical properties of the cortical 

bone.  Loading can be applied at the wrist to simulate a number of activities.  An implant 

could be added to the model.  In the case of an arthroplasty, the bone to tissue interface 

could be tested and simulated once the radius and ulna were updated to accurately 

represent cortical and trabecular bone. 

Another use for the EMG and muscle data would be as an input for forearm 

simulators.  Mechanical forearm joint simulators (72, 78, 79, 87, 99, 213) have been 

used to quantify forces in the distal forearm, design new implants, and evaluate 

therapeutic procedures.  These methods, however, have incorporated only a few 

forearm muscles (72, 78, 87, 99, 213).  Adding more actuators to these simulators so 
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that they could pull on more than four muscle tendons would improve the accuracy of 

the resulting data.  

 Other studies that could provide valuable insight would be to develop a model 

using software such as Opensim (National Center for Simulation in Rehabilitation 

Research, Stanford, CA).  This software allows you to input force values as well as to 

change the line of action of a muscle to account for muscle wrapping.  And finally, a 

dynamic model could be made.  Because EMG data only have a linear relationship 

during isometric exercises, the force data would have to come from somewhere else.  

Ideally one could use the Hill muscle model in conjunction with maximum muscle forces.  

Cadaveric muscle orientation data could be collected by using a marker/camera system 

with a high resolution to obtain the coordinates of the markers of interest as the 

forearm is moving.  The theoretical actions of the muscles could also be modeled with 

software utilizing Kane’s methods of dynamics. 
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APPENDIX A: MUSCLE DATA OVERVIEW 

 

Muscles which contributed to loading of the joint are black while muscles which acted 

to unload the joint are in red.  The number in parenthises is the % change that removal 

of the muscle caused in the intact model.  Muscles are listed in order from the largest 

contributer of loading to the smallest contributer of loading (or unloading).  Cells which 

are shaded indicate a significant difference between the intact model forces and the 

forces observed when the muscle is removed. 

 

Table A.1. Muscle Contributions to DRUJ Shear Forces During Forearm Pronation 

 

 

MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
1 SUP(28) SUP(24.3) FCR(23.8) FCR(30.2) FCR(48.2) PT(107.1) SUP(243.5) SUP(55.5) SUP(52)
2 ECU(19.6) PT(16.2) PT(20.4) PT(26.7) PT(42.9) FCR(85.6) APL(146.2) PQ(22.8) PQ(27.6)
3 EI(13.6) ECU(15) SUP(15.39) FCU(17.6) FCU(42) FCU(73.7) ECU(122.1) APL(18.3) APL(16.8)
4 PT(13.2) FCR(13.2) FCU(12.64) SUP(9.9) PL(12.9) ECRL(28.7) EPL(46.6) ECU(10) FCU(11.3)
5 ECRB(12.4) ECRB(12.1) ECRB(10.5) EI(9.2) EI(5.9) PL(22.8) ECRB(35.6) EPL(8.4) FCR(11.2)
6 FCR(9.4) FCU(11.4) ECU(9.22) PL(6.7) ECRL(5) BRAR(22.4) EI(22.2) FCR(8.3) EPL(6.7)
7 FCU(9.3) EI(10.7) EI(8.84) ECRB(5.5) BB(0.1) BRA(20.5) PQ(-10.7) FCU(8.1) PT(5)
8 EPL(7.3) EPL(6.4) EPL(5.02) ECU(3.9) ECRB(-0.9) BB(4) PL(-12.1) ECRB(3.6) PL(3.8)
9 APL(6.6) APL(6.3) PL(4.02) EPL(1.8) BRA(-1.8) EI(-2.9) BB(-18) EI(3.4) EI(2.4)
10 PL(2.2) PL(2.6) APL(3.23) PQ(1.5) BRAR(-2.9) PQ(-4.6) FCU(-21) PL(3) ECU(2.1)
11 ECRL(1.6) ECRL(0.9) PQ(1.67) ECRL(0.9) EPL(-4.6) ECRB(-17.1) FCR(-46.9) PT(-2) ECRB(-0.5)
12 BB(-0.6) BB(-1.5) ECRL(0.13) BB(-0.7) ECU(-7.5) EPL(-20.9) ECRL(-60) BB(-2.7) BB(-2.5)
13 BRAR(-6.2) PQ(-3.1) BB(-1.57) APL(-2.5) PQ(-9.3) ECU(-54.4) BRAR(-87.9) ECRL(-8.7) ECRL(-10.6)
14 BRA(-7.9) BRAR(-7) BRA(-6.5) BRA(-4.7) SUP(-12) APL(-68.9) BRA(-90.5) BRA(-13.8) BRA(-12.5)
15 PQ(-8.4) BRA(-7.4) BRAR(-6.8) BRAR(-6) APL(-17.9) SUP(-96.3) PT(-169.1) BRAR(-14) BRAR(-12.9)
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Table A.2.  Muscle Contributions to DRUJ Transverse Forces During Forearm Pronation 

 
 

Table A.3.  Muscle Contributions to DRUJ Resultant Forces During Forearm Pronation 

 
 

 

MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
1 PQ(65.1) PQ(56.2) PQ(48.8) PQ(43.5) PQ(39.9) PQ(38.3) PQ(43) PQ(48.3) PQ(50.1)
2 SUP(17.2) SUP(20) SUP(18) SUP(21.6) SUP(22.3) SUP(25.8) SUP(22.2) SUP(21.8) PT(20.8)
3 APL(7.2) APL(9.4) APL(11) APL(9.9) PT(9.1) PT(12.3) PT(16.4) PT(19.4) SUP(19)
4 EPL(6.3) ECRB(7.4) ECRB(8.8) EPL(6.8) APL(9) FCR(9.3) FCR(11.4) FCR(12.3) FCR(14)
5 ECRB(5.8) EPL(7.1) EPL(8.1) ECRB(6.5) EPL(6.4) APL(8.6) APL(7.5) FCU(5) FCU(5.3)
6 ECRL(5.4) EI(4.6) EI(4.8) PT(5.8) FCR(6.1) EPL(4.7) FCU(5) PL(4.2) PL(4.1)
7 EI(4.5) ECU(4.3) ECU(4.3) EI(5.5) ECRB(5.9) EI(4.5) EPL(4.1) APL(3.8) APL(3.9)
8 ECU(3.3) ECRL(4) PT(2.9) ECU(3.5) EI(4.6) FCU(4) PL(3.5) EPL(3.2) EPL(3.5)
9 BRAR(1.7) BRAR(0.7) ECRL(2.1) FCR(2.6) ECU(1.9) PL(2.6) EI(3.4) EI(1.8) EI(1.7)
10 BRA(0) BB(-0.4) PL(-0.5) ECRL(0.9) PL(1.5) ECRB(2.2) ECRB(-0.3) ECRL(0) BRAR(1.3)
11 BB(0) BRA(-1.2) FCR(-0.7) PL(0.4) FCU(1.3) ECRL(-0.6) ECRL(-0.5) BB(-0.2) ECRL(1)
12 PL(-1.6) PL(-1.2) BB(-0.8) BB(-0.6) ECRL(0.1) BB(-0.7) BB(-0.7) BRAR(-0.7) BB(0.1)
13 FCR(-3.6) PT(-1.4) BRAR(-1) FCU(-1.1) BB(-0.5) ECU(-2.3) BRAR(-2.9) BRA(-2.1) BRA(-0.6)
14 PT(-4) FCR(-3.1) BRA(-2.7) BRAR(-2.1) BRAR(-3.1) BRAR(-4) BRA(-4.7) ECRB(-3.3) ECRB(-4.8)
15 FCU(-7.2) FCU(-6.4) FCU(-3.2) BRA(-3.1) BRA(-4.6) BRA(-4.7) ECU(-7.3) ECU(-13.6) ECU(-19.5)

MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
1 PQ(32.3) PQ(32.1) PQ(35.4) PQ(37.3) PQ(36.9) PQ(37.3) PQ(41.3) PQ(41.7) PQ(38.3)
2 SUP(20.3) SUP(21.3) SUP(17.45) SUP(20.2) SUP(20.7) SUP(24.1) SUP(21.7) SUP(25.6) SUP(25.2)
3 ECU(8) ECRB(8.8) APL(9.21) APL(8.4) PT(10.1) PT(12.3) PT(14.8) PT(14.7) PT(15.4)
4 ECRB(7.7) APL(8.4) ECRB(9.14) PT(7.9) APL(7.9) FCR(9.7) FCR(11.3) FCR(11.8) FCR(13.6)
5 EI(7.3) ECU(7.4) EPL(7.42) ECRB(6.4) FCR(7.4) APL(7.9) APL(7.8) APL(6.1) FCU(7.8)
6 APL(7) EPL(6.8) PT(6.37) EPL(6.2) EPL(6) EI(4.6) FCU(5.1) FCU(5.8) APL(7.4)
7 EPL(6.6) EI(6.4) EI(5.65) EI(5.9) ECRB(5.7) EPL(4.5) EPL(4.2) EPL(4.2) EPL(4.5)
8 ECRL(4.2) PT(3.6) ECU(5.44) FCR(5.2) EI(4.6) FCU(4.4) EI(3.6) PL(4) PL(3.9)
9 PT(0.9) ECRL(3) FCR(4.06) ECU(3.6) FCU(2.6) PL(2.7) PL(3.4) EI(2.3) EI(2.3)
10 FCR(0.3) FCR(1.6) ECRL(1.71) PL(1) PL(1.9) ECRB(2.1) ECRB(0.1) BB(-0.7) BB(-0.6)
11 BB(-0.2) PL(-0.1) PL(0.44) ECRL(0.9) ECU(1.7) ECRL(-0.4) ECRL(-0.6) ECRL(-1.4) ECRL(-1.9)
12 PL(-0.5) BB(-0.7) FCU(0.03) FCU(0.8) ECRL(0.3) BB(-0.7) BB(-0.8) ECRB(-1.8) ECRB(-2.7)
13 BRAR(-0.8) FCU(-1.3) BB(-0.96) BB(-0.6) BB(-0.5) ECU(-2.5) BRAR(-3.2) BRAR(-3.1) BRAR(-2.9)
14 FCU(-2.3) BRAR(-1.7) BRAR(-2.19) BRAR(-2.5) BRAR(-3) BRAR(-3.9) BRA(-4.9) BRA(-4.2) BRA(-3.9)
15 BRA(-2.4) BRA(-3.1) BRA(-3.44) BRA(-3.2) BRA(-4.5) BRA(-4.5) ECU(-6.6) ECU(-9.1) ECU(-12)
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Table A.4.  Muscle Contributions to DRUJ Shear Forces During Forearm Supination 

    

Table A.5.  Muscle Contributions to DRUJ Transverse Forces During Forearm 

Supination 

 
 

 

MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
1 SUP(32.6) SUP(30.8) SUP(26.2) FCU(37) FCU(114.8) APL(128) SUP(83.6) SUP(65.7) SUP(74.1)
2 ECU(22.5) ECU(18.9) FCU(23.3) FCR(29) FCR(75.6) SUP(117.1) APL(63.2) APL(39.8) APL(30.2)
3 FCU(16.4) FCU(17.4) FCR(22.7) SUP(18.4) PT(35.4) ECU(55.2) ECU(27.2) EPL(15.5) EPL(13.1)
4 ECRB(16) FCR(14.8) ECU(14.8) PT(10.8) EI(18.8) EPL(36) EPL(23) PQ(10.7) PQ(12.3)
5 FCR(10.1) ECRB(13.8) ECRB(10.6) EI(9.8) PL(15.4) ECRB(21.1) ECRB(10.6) ECU(8.3) FCU(9.8)
6 APL(8.8) APL(9.1) EI(9.1) ECRB(7.5) ECRL(14) EI(2.8) EI(7.9) FCU(8.1) FCR(7)
7 EI(7.4) EI(7.6) PT(6.6) ECU(6.1) BB(2.1) PQ(2) PQ(-1.5) EI(5.4) EI(4)
8 EPL(5.5) EPL(5) APL(4.7) PL(5.3) ECRB(-1.7) PL(-9.8) PL(-1.5) FCR(5.3) PT(2.3)
9 PT(2.5) PT(4.3) EPL(4.4) EPL(2.4) BRA(-3) BRAR(-10.4) FCU(-5.4) ECRB(3.2) ECU(2.2)
10 PL(1.7) PL(2.9) PL(4) ECRL(1.1) BRAR(-7.1) BRA(-12.1) FCR(-5.7) PL(1.3) PL(1.8)
11 ECRL(1.3) ECRL(0.8) PQ(0.7) PQ(0.6) PQ(-13) ECRL(-28.4) BRAR(-9.6) PT(-0.8) ECRB(-0.5)
12 PQ(-2.2) PQ(-0.9) ECRL(0.1) APL(-4.3) EPL(-15.4) PT(-34.1) PT(-14.4) BRAR(-6.1) BRAR(-4.2)
13 BRA(-4) BRA(-4.7) BRA(-5.7) BRA(-4.8) ECU(-19.6) BB(-50.1) ECRL(-15.8) ECRL(-9.4) BRA(-9.1)
14 BRAR(-6.7) BRAR(-7.5) BRAR(-7.9) BRAR(-6.9) SUP(-43.8) FCR(-51.4) BRA(-16.7) BRA(-11.6) ECRL(-11.2)
15 BB(-12) BB(-12.2) BB(-13.7) BB(-11.8) APL(-72.7) FCU(-66) BB(-44.9) BB(-35.3) BB(-31.9)

MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
1 SUP(38.8) SUP(39.6) SUP(38) SUP(43) SUP(38.5) SUP(40.8) SUP(38.7) SUP(37.3) SUP(38.9)
2 PQ(32.6) PQ(26.4) PQ(25.3) PQ(19.2) PQ(26.1) PQ(21.5) PQ(30.1) PQ(33) PQ(32)
3 APL(18.5) APL(21.1) APL(19.8) APL(18.6) APL(17.3) APL(20.8) APL(16.5) APL(11.8) PT(14)
4 ECRB(14.3) ECRB(13.3) ECRB(11) EPL(10) EPL(10) EPL(10.5) EPL(10.3) PT(11.5) FCR(12.4)
5 EPL(9.2) EPL(8.5) EPL(8.8) ECRB(9.6) EI(6.8) FCR(7.3) PT(7.1) FCR(11.4) APL(9.9)
6 ECRL(8.5) ECU(8.4) ECU(8.6) EI(6.3) ECRB(5.3) EI(5.6) FCR(7) EPL(8.6) EPL(9.8)
7 ECU(7.3) ECRL(5.7) EI(6.1) ECU(5.9) FCR(4.5) PT(5.1) FCU(6.5) FCU(7.3) FCU(6.7)
8 EI(4.8) EI(5.1) ECRL(2.9) FCR(2.7) PT(3.6) FCU(4.7) EI(6.1) EI(4.2) EI(4)
9 BRAR(3.5) BRAR(1.1) PT(1.1) PT(2.5) ECU(2.4) ECRB(3.5) PL(2.2) PL(2.6) PL(2.8)
10 BRA(0) PT(-0.6) PL(-0.6) ECRL(1.1) FCU(1.7) PL(1.5) ECRB(-0.5) ECRL(0) BB(2.4)
11 PT(-1.5) BRA(-1.2) FCR(-0.8) PL(0.3) PL(0.9) ECRL(-0.8) ECRL(-0.7) BRAR(-0.4) ECRL(1.6)
12 BB(-1.7) PL(-2.1) BRAR(-1.4) FCU(-2.5) ECRL(0.1) BRAR(-2.4) BRAR(-1.6) BRA(-2.6) BRAR(0.6)
13 PL(-2.5) BB(-4.7) BRA(-2.9) BRAR(-2.7) BRAR(-3.5) ECU(-3) BRA(-4.4) BB(-4.1) BRA(-0.6)
14 FCR(-7.5) FCR(-5.4) FCU(-7.2) BRA(-3.3) BRA(-3.7) BRA(-3.6) ECU(-8.2) ECRB(-4.3) ECRB(-5.9)
15 FCU(-24.4) FCU(-15.2) BB(-8.7) BB(-10.6) BB(-9.9) BB(-11.2) BB(-9.1) ECU(-16.2) ECU(-28.4)
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Table A.6.  Muscle Contributions to DRUJ Resultant Forces During Forearm Supination 

 
  

MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
1 SUP(34.7) SUP(34.8) SUP(34.2) SUP(39) SUP(36.7) SUP(39.5) SUP(38.8) SUP(41.5) SUP(45.2)
2 ECU(16.4) APL(14.6) PQ(16.98) PQ(16.4) PQ(25.1) APL(21.2) PQ(25.9) PQ(23.9) PQ(18.9)
3 ECRB(15.1) ECU(13.6) APL(14.89) APL(15.3) APL(16.1) PQ(20.3) APL(18.8) APL(19.3) APL(18)
4 APL(12.2) ECRB(13.4) ECRB(10.8) ECRB(9.3) EPL(9.7) EPL(10.8) EPL(11) EPL(10.7) EPL(11.3)
5 PQ(8.7) PQ(11) ECU(10.52) EPL(9) EI(7) FCR(6.5) EI(6.4) FCR(9.5) FCR(10)
6 EPL(6.8) EPL(6.7) EPL(7.38) EI(6.7) ECRB(5.3) EI(5.7) FCR(6.2) FCU(7.8) FCU(8.8)
7 EI(6.4) EI(6.4) EI(6.94) ECU(6) FCR(4.9) PT(4.3) FCU(5.9) PT(7) PT(7.8)
8 ECRL(3.9) FCR(4.5) FCR(5.53) FCR(5.6) PT(3.7) ECRB(3.9) PT(5.2) EI(5.1) EI(4.9)
9 FCR(3.3) ECRL(3.2) PT(2.7) PT(3.5) ECU(2.4) FCU(3.8) PL(1.9) PL(2.1) PL(2.1)
10 PT(1) PT(1.9) ECRL(2.12) FCU(1.6) FCU(2.3) PL(1.3) ECRB(0.8) ECRB(-1.5) BRAR(-1.5)
11 PL(0.1) PL(0.4) FCU(0.86) ECRL(1.2) PL(1) ECRL(-1) ECRL(-1.5) BRAR(-2.2) ECRB(-2.2)
12 FCU(-0.5) FCU(0.3) PL(0.7) PL(0.9) ECRL(0.3) ECU(-1.9) BRAR(-2.1) ECRL(-2.7) ECRL(-3.4)
13 BRA(-2.4) BRA(-2.9) BRAR(-3.24) BRAR(-3.2) BRAR(-3.5) BRAR(-2.5) BRA(-5) BRA(-5.2) BRA(-4.1)
14 BRAR(-3) BRAR(-3.3) BRA(-3.6) BRA(-3.5) BRA(-3.6) BRA(-3.6) ECU(-5.3) ECU(-8.2) ECU(-12.4)
15 BB(-8) BB(-8.5) BB(-9.93) BB(-10.6) BB(-9.7) BB(-11.6) BB(-11.3) BB(-14.2) BB(-13)
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APPENDIX B: MUSCLE DATA PLOTS 

 

These figures show the percent change that each muscle causes on transverse and shear 

DRUJ forces during pronation and supination when the muscle is removed.  The positive 

and negative sides of the bars combine to equal 100% of the force observed at that 

particular position.  Because resultant forces are quantitative and don’t represent a 

direction, they do not add up to 100% and are not included. 

 



 
 

 

  

Figure B.1. Shear Force Muscle Contribution during Pronation  
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 Figure B.2. Shear Force Muscle Contribution during Supination 
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Figure B.3. Transverse Force Muscle Contribution during Pronation 
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Figure B.4. Transverse Force Muscle Contribution during Supination
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APPENDIX C: INDIVIDUAL MUSCLE DATA OVERVIEW 

 

These tables show the percent change in force, extracted from Appendix A for each 

individual muscle.  In addition they also contain muscle length and EMG data.  “R” 

indicates the radial origin, “U” indicates the ulnar origin and “H” indicates the humeral 

origin.  “P” indicates pronating tests and “S” indicates supinating tests.  Shaded boxes 

indicate that a significant difference was observed when the muscle was removed from 

the model. Red numbers indicate that the change was negative.  A “*” indicates that the 

muscle was the largest loader or unloader in that particular situation. 

 

Table C.1. Abductor Pollicis Longus Data Overview 

 
 

Forearm Angle MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
P 23.9 33.2 37.4 34.2 33.7 32.5 34.4 30.2 33.6
S 42.2 48.5 45.4 43.1 48.2 52.9 53.9 51.6 44.5
R 96.3 96.6 97.1 97.4 97.4 95.6 94.5 94.8 97.3
U 98.6 98.5 98.2 98.1 98.1 96.2 95.1 95.9 96.7
P 6.6 6.3 3.2 -2.5 -17.9* -68.9 146.2 18.3 16.8
S 8.8 9.1 4.7 -4.3 -72.7* 128* 63.2 39.8 30.2
P 7.2 9.4 11.0 9.9 9.0 8.6 7.5 3.8 3.9
S 18.5 21.1 19.8 18.6 17.3 20.8 16.5 11.8 9.9
P 7.0 8.4 9.2 8.4 7.9 7.9 7.8 6.1 7.4
S 12.2 14.6 14.9 15.3* 16.1 21.2 18.8 19.3 18.0
P 9 9 10 13 15 14 2 3 3
S 6 6 8 12 15 1 2 2 2
P 3 3 3 3 4 5 5 7 7
S 3 3 3 3 3 3 3 3 5
P 6 4 3 3 4 5 5 5 6
S 4 2 3 1 3 2 3 3 3

EMG  (% of 
Maximum)

%
 Δ

 F
or

ce
Co

nt
rib

ut
io

n 
Ra

nk

Shear

Transverse

Resultant

Shear

Transverse

Resultant

Length (% of 
Maximum)
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Table C.2. Biceps Brachii Data Overview 

  

Table C.3. Brachialis Data Overview 

 
 

Forearm Angle MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
P 1.7 5.7 6.9 4.1 3.6 4.5 6.5 6.4 6.1
S 44.6 45.7 50.0 48.7 48.9 49.3 58.6 64.9 58.1

Length (% of 
Maximum)

98.2 98.5 98.3 97.3 95.6 94.7 93.4 92.3 92.3

P -0.6 -1.5 -1.6 -0.7 0.1 4.0 -18.0 -2.7 -2.5
S -12* -12.2* -13.7* -11.8* 2.1 -50.1 -44.9* -35.3* -31.9*
P 0.0 -0.4 -0.8 -0.6 -0.5 -0.7 -0.7 -0.2 0.1
S -1.7 -4.7 -8.7 -10.6 -9.9 -11.2* -9.1* -4.1 2.4
P -0.2 -0.7 -1.0 -0.6 -0.5 -0.7 -0.8 -0.7 -0.6
S -8* -8.5* -9.9* -10.62* -9.7* -11.6* -11.3* -14.2* -13*
P 12 12 13 12 7 8 9 12 12
S 15 15 15 15 7 13 15 15 15
P 11 10 12 12 13 12 12 11 12
S 12 13 15 15 15 15 15 13 10
P 11 12 13 13 13 12 12 10 10
S 15 15 15 15 15 15 15 15 15Co

nt
rib

ut
io

n 
Ra

nk Shear

Transverse

Resultant

EMG  (% of 
Maximum)

%
 Δ

 F
or

ce
 Shear

Transverse

Resultant

Forearm Angle MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
P 21.2 24.9 24.7 21.3 28.9 28.1 33.9 30.8 29.2
S 14.2 16.0 17.9 15.6 17.2 14.5 22.7 20.3 15.6

Length (% of 
Maximum)

95.5 96.0 95.3 95.4 95.9 97.0 98.3 99.0 98.7

P -7.9 -7.4* -6.5 -4.7 -1.8 20.5 -90.5 -13.8 -12.5
S -4.0 -4.7 -5.7 -4.8 -3.0 -12.1 -16.7 -11.6 -9.1
P 0.0 -1.2 -2.7 -3.1* -4.6* -4.7* -4.7 -2.1 -0.6
S 0.0 -1.2 -2.9 -3.3 -3.7 -3.6 -4.4 -2.6 -0.6
P -2.4* -3.1* -3.4* -3.2* -4.5* -4.5* -4.9 -4.2 -3.9
S -2.4 -2.9 -3.6 -3.5 -3.6 -3.6 -5.0 -5.2 -4.1
P 14 15 14 14 9 7 14 14 14
S 13 13 13 13 9 10 14 14 13
P 10 11 14 15 15 15 14 13 13
S 10 11 13 14 14 14 13 12 13
P 15 15 15 15 15 15 14 14 14
S 13 13 14 14 14 14 13 13 13Co

nt
rib

ut
io

n 
Ra

nk Shear

Transverse

Resultant

EMG  (% of 
Maximum)

%
 Δ

 F
or

ce

Shear

Transverse

Resultant
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Table C.4. Brachioradialis Data Overview 

 
 

Table C.5. Extensor Carpi Radialis Brevis Data Overview 

 
 

 

 

 

 

 

 

Forearm Angle MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
P 21.2 29.7 28.4 27.6 30.3 37.6 38.3 37.9 36.2
S 30.4 32.0 27.5 23.2 25.8 15.3 15.1 13.0 8.7

Length (% of 
Maximum)

98.7 97.8 97.9 95.2 93.7 94.4 95.7 96.2 96.8

P -6.2 -7.0 -6.8* -6* -2.9 22.4 -87.9 -14* -12.9*
S -6.7 -7.5 -7.9 -6.9 -7.1 -10.4 -9.6 -6.1 -4.2
P 1.7 0.7 -1.0 -2.1 -3.1 -4.0 -2.9 -0.7 1.3
S 3.5 1.1 -1.4 -2.7 -3.5 -2.4 -1.6 -0.4 0.6
P -0.8 -1.7 -2.2 -2.5 -3.0 -3.9 -3.2 -3.1 -2.9
S -3.0 -3.3 -3.2 -3.2 -3.5 -2.5 -2.1 -2.2 -1.5
P 13 14 15 15 10 6 13 15 15
S 14 14 14 14 10 9 11 12 12
P 9 9 13 14 14 14 13 12 10
S 9 9 12 13 13 12 12 11 12
P 13 14 14 14 14 14 13 13 13
S 14 14 13 13 13 13 12 11 10Co

nt
rib

ut
io

n 
Ra

nk Shear

Transverse

Resultant

EMG  (% of 
Maximum)

%
 Δ

 F
or

ce
 Shear

Transverse

Resultant

Forearm Angle MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
P 23.8 34.1 42.8 36.9 43.0 29.1 26.7 31.1 30.8
S 40.7 39.5 36.0 36.4 28.7 31.5 28.8 21.9 19.7

Length (% of 
Maximum)

97.8 98.3 98.9 99.0 99.3 99.1 99.0 98.9 98.7

P 12.4 12.1 10.5 5.5 -0.9 -17.1 35.6 3.6 -0.5
S 16.0 13.8 10.6 7.5 -1.7 21.1 10.6 3.2 -0.5
P 5.8 7.4 8.8 6.5 5.9 2.2 -0.3 -3.3 -4.8
S 14.3 13.3 11.0 9.6 5.3 3.5 -0.5 -4.3 -5.9
P 7.7 8.8 9.1 6.4 5.7 2.1 0.1 -1.8 -2.7
S 15.1 13.4 10.8 9.3 5.3 3.9 0.8 -1.5 -2.2
P 4 5 5 6 8 5 5 9 11
S 5 5 5 7 8 11 5 8 11
P 5 4 4 5 7 10 10 14 14
S 4 4 4 5 6 9 10 14 14
P 4 3 4 5 7 10 10 12 12
S 3 4 4 4 6 8 10 10 11Co

nt
rib

ut
io

n 
Ra

nk Shear

Transverse

Resultant

EMG  (% of 
Maximum)

%
 Δ

 F
or

ce
 Shear

Transverse

Resultant
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Table C.6. Extensor Carpi Radialis Longus Data Overview  

 
 

Table C.7. Extensor Carpi Ulnaris Data Overview 

 
 

Forearm Angle MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
P 30.5 34.7 33.8 37.5 34.5 34.1 27.6 27.6 30.0
S 33.4 32.1 31.2 31.4 34.2 29.5 26.4 23.5 23.3

Length (% of 
Maximum)

98.0 98.0 98.0 98.0 97.8 98.2 99.0 99.4 99.6

P 1.6 0.9 0.1 0.9 5.0 28.7 -60.0 -8.7 -10.6
S 1.3 0.8 0.1 1.1 14.0 -28.4 -15.8 -9.4 -11.2
P 5.4 4.0 2.1 0.9 0.1 -0.6 -0.5 0.0 1.0
S 8.5 5.7 2.9 1.1 0.1 -0.8 -0.7 0.0 1.6
P 4.2 3.0 1.7 0.9 0.3 -0.4 -0.6 -1.4 -1.9
S 3.9 3.2 2.1 1.2 0.3 -1.0 -1.5 -2.7 -3.4
P 11 11 12 11 6 4 12 13 13
S 11 11 12 10 6 11 13 13 14
P 6 8 9 10 12 11 11 10 11
S 6 7 8 10 12 11 11 10 11
P 8 9 10 11 12 11 11 11 11
S 8 9 10 11 12 11 11 12 12Co

nt
rib

ut
io

n 
Ra

nk Shear

Transverse

Resultant

EMG  (% of 
Maximum)

%
 Δ

 F
or

ce
 Shear

Transverse

Resultant

Forearm Angle MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
P 39.4 46.4 45.7 48.3 55.5 49.7 51.1 52.1 54.7
S 60.0 59.0 61.2 54.0 51.0 44.2 41.2 33.7 41.1

Length (% of 
Maximum)

97.7 98.3 99.1 99.4 99.6 99.1 98.8 98.6 98.3

P 19.6 15.0 9.2 3.9 -7.5 -54.4 122.1 10.0 2.1
S 22.5 18.9 14.8 6.1 -19.6 55.2 27.2 8.3 2.2
P 3.3 4.3 4.3 3.5 1.9 -2.3 -7.3* -13.6* -19.5*
S 7.3 8.4 8.6 5.9 2.4 -3.0 -8.2 -16.2* -28.4*
P 8.0 7.4 5.4 3.6 1.7 -2.5 -6.6 -9.1 -12.0
S 16.4 13.6 10.5 6.0 2.4 -1.9 -5.3* -8.2* -12.4*
P 2 3 6 8 12 13 3 4 10
S 2 2 4 7 13 3 3 5 9
P 8 7 7 8 9 13 15 15 15
S 7 6 6 7 9 13 14 15 15
P 3 5 8 9 11 13 15 15 15
S 2 3 5 7 9 12 14 14 14Co

nt
rib

ut
io

n 
Ra

nk Shear

Transverse

Resultant

EMG  (% of 
Maximum)

%
 Δ

 F
or

ce

Shear

Transverse

Resultant
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Table C.8. Extensor Indicis Data Overview 

 
 

Table C.9. Extensor Pollicis Longus Data Overview 

 
 

Forearm Angle MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
P 40.2 41.5 38.9 42.5 33.9 35.3 33.1 27.6 29.4
S 29.0 29.7 33.3 32.6 37.9 29.6 42.8 34.8 35.4

Length (% of 
Maximum) 96.4 96.9 98.3 99.1 99.5 98.8 97.9 97.3 96.7

P 13.6 10.7 8.8 9.2 5.9 -2.9 22.2 3.4 2.4
S 7.3 6.4 5.6 5.9 4.6 4.6 3.6 2.3 2.3
P 4.5 4.6 4.8 5.5 4.6 4.5 3.4 1.8 1.7
S 7.4 7.6 9.1 9.8 18.8 2.8 7.9 5.4 4.0
P 7.3 6.4 5.6 5.9 4.6 4.6 3.6 2.3 2.3
S 6.4 6.4 6.9 6.7 7.0 5.7 6.4 5.1 4.9
P 3 7 7 5 5 9 6 9 9
S 7 7 6 5 4 6 6 7 7
P 7 6 6 7 8 7 9 9 9
S 8 8 7 6 5 6 8 8 8
P 5 7 7 7 8 6 8 9 9
S 7 7 7 6 5 6 5 8 8Co

nt
rib

ut
io

n 
Ra

nk Shear

Transverse

Resultant

EMG  (% of 
Maximum)

%
 Δ

 F
or

ce

Shear

Transverse

Resultant

Forearm Angle MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
P 30.3 36.8 41.5 35.1 33.1 24.4 23.7 26.5 26.4
S 30.3 28.9 30.2 34.7 38.6 36.9 42.4 38.4 38.0

Length (% of 
Maximum)

96.5 97.7 97.7 98.2 97.0 97.4 96.5 96.7 96.0

P 7.3 6.4 5.0 1.8 -4.6 -20.9 46.6 8.4 6.7
S 5.5 5.0 4.4 2.4 -15.4 36.0 23.0 15.5 13.1
P 6.3 7.1 8.1 6.8 6.4 4.7 4.1 3.2 3.5
S 9.2 8.5 8.8 10.0 10.0 10.5 10.3 8.6 9.8
P 6.6 6.8 7.4 6.2 6.0 4.5 4.2 4.2 4.5
S 6.8 6.7 7.4 9.0 9.7 10.8 11.0 10.7 11.3
P 8 8 8 9 11 12 4 5 6
S 8 8 9 9 12 4 4 3 3
P 4 5 5 4 5 6 7 8 8
S 5 5 5 4 4 4 4 6 6
P 7 6 5 6 6 7 7 7 7
S 6 6 6 5 4 4 4 4 4Co

nt
rib

ut
io

n 
Ra

nk Shear

Transverse

Resultant

EMG  (% of 
Maximum)

%
 Δ

 fo
rc

e

Shear

Transverse

Resultant
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Table C.10. Flexor Carpi Radialis Data Overview 

 
 

Table C.11. Flexor Carpi Ulnaris Data Overview 

 
 

Forearm Angle MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
P 20.0 31.3 47.7 45.5 49.0 50.2 49.7 53.3 56.0
S 28.6 35.3 37.9 31.5 27.1 26.4 21.9 26.6 25.7

Length (% of 
Maximum)

98.5 98.8 99.2 99.2 98.9 98.4 98.2 98.3 98.6

P 9.4 13.2 23.8* 30.2* 48.2* 85.6 -46.9 8.3 11.2
S 10.1 14.8 22.7 29.0 75.6 -51.4 -5.7 5.3 7.0
P -3.6 -3.1 -0.7 2.6 6.1 9.3 11.4 12.3 14.0
S -7.5 -5.4 -0.8 2.7 4.5 7.3 7.0 11.4 12.4
P 0.3 1.6 4.1 5.2 7.4 9.7 11.3 11.8 13.6
S 3.3 4.5 5.5 5.6 4.9 6.5 6.2 9.5 10.0
P 6 4 1 1 1 2 11 6 5
S 5 4 3 2 2 14 10 8 6
P 13 14 11 9 6 4 4 4 4
S 14 14 11 8 7 5 6 5 4
P 10 10 9 8 5 4 4 4 4
S 9 8 8 8 7 5 6 5 5Co

nt
rib

ut
io

n 
Ra

nk Shear

Transverse

Resultant

EMG  (% of 
Maximum)

%
 Δ

 F
or

ce
 Shear

Transverse

Resultant

Forearm Angle MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
P 13.3 17.9 16.5 16.8 25.9 29.2 25.5 29.3 35.0
S 31.1 27.6 25.3 25.5 25.0 22.9 23.8 23.0 22.5

Length (% of 
Maximum)

99.3 99.5 99.5 99.6 99.1 97.7 96.7 96.6 97.0

P 9.3 11.4 12.6 17.6 42.0 73.7 -21.0 8.1 11.3
S 16.4 17.4 23.3 37* 114.8* -66* -5.4 8.1 9.8
P -7.2* -6.4* -3.2* -1.1 1.3 4.0 5.0 5.0 5.3
S -24.4* -15.2* -7.2 -2.5 1.7 4.7 6.5 7.3 6.7
P -2.3 -1.3 0.0 0.8 2.6 4.4 5.1 5.8 7.8
S -0.5 0.3 0.9 1.6 2.3 3.8 5.9 7.8 8.8
P 7 6 4 3 3 3 10 7 4
S 3 3 2 1 1 15 9 6 5
P 15 15 15 13 11 8 6 5 5
S 15 15 14 12 10 8 7 7 7
P 14 13 13 13 9 8 6 6 5
S 12 12 11 10 10 9 7 6 6Co

nt
rib

ut
io

n 
Ra

nk Shear

Transverse

Resultant

EMG  (% of 
Maximum)

%
 Δ

 F
or

ce

Shear

Transverse

Resultant
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Table C.12. Palmaris Longus Data Overview 

 
 

Table C.13. Pronator Quadratus Data Overview 

 

 

Forearm Angle MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
P 28.7 33.6 39.9 46.0 56.7 56.6 56.4 65.9 58.2
S 29.8 38.1 33.1 25.9 23.9 21.2 25.6 21.8 20.0

Length (% of 
Maximum)

99.4 99.2 99.0 98.6 98.2 97.7 97.8 98.2 98.6

P 2.2 2.6 4.0 6.7 12.9 22.8 -12.1 3.0 3.8
S 1.7 2.9 4.0 5.3 15.4 -9.8 -1.5 1.3 1.8
P -1.6 -1.2 -0.5 0.4 1.5 2.6 3.5 4.2 4.1
S -2.5 -2.1 -0.6 0.3 0.9 1.5 2.2 2.6 2.8
P -0.5 -0.1 0.4 1.0 1.9 2.7 3.4 4.0 3.9
S 0.1 0.4 0.7 0.9 1.0 1.3 1.9 2.1 2.1
P 10 10 9 6 4 5 8 10 8
S 10 10 10 8 5 8 8 10 10
P 12 12 10 11 10 9 8 6 6
S 13 12 10 11 11 10 9 9 9
P 12 11 11 10 10 9 9 8 8
S 11 11 12 12 11 10 9 9 9Co

nt
rib

ut
io

n 
Ra

nk Shear

Transverse

Resultant

EMG  (% of 
Maximum)

%
 Δ

 F
or

ce

Shear

Transverse

Resultant

Forearm Angle MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
P 65.4 68.2 66.4 63.3 58.5 51.3 52.9 54.9 47.1
S 22.5 20.8 23.2 18.7 28.6 19.4 26.5 20.3 15.5

Length (% of 
Maximum)

56.5 60.7 66.6 72.8 79.9 86.8 95.5 97.6 98.6

P -8.4* -3.1 1.7 1.5 -9.3 -4.6 -10.7 22.8 27.6
S -2.2 -0.9 0.7 0.6 -13.0 2.0 -1.5 10.7 12.3
P 65.1* 56.2* 48.8* 43.5* 39.9* 38.3* 43* 48.3* 50.1*
S 32.6 26.4 25.3 19.2 26.1 21.5 30.1 33.0 32.0
P 32.3* 32.1* 35.4* 37.3* 36.9* 37.3* 41.3* 41.7* 38.3*
S 8.7 11.0 17.0 16.4 25.1 20.3 25.9 23.9 18.9
P 15 13 11 10 13 10 7 2 2
S 12 12 11 11 11 7 7 4 4
P 1 1 1 1 1 1 1 1 1
S 2 2 2 2 2 2 2 2 2
P 1 1 1 1 1 1 1 1 1
S 5 5 2 2 2 3 2 2 2Co

nt
rib

ut
io

n 
Ra

nk Shear

Transverse

Resultant

EMG  (% of 
Maximum)

%
 Δ
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Transverse

Resultant
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Table C.14. Pronator Teres Data Overview 

 
 

Table C.15. Supinator Data Overview 

 

  

Forearm Angle MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
P 51.3 55.1 53.8 50.8 53.7 54.1 56.0 50.9 46.6
S 12.9 14.6 14.4 14.8 15.6 15.1 17.3 16.3 16.2
H 98.2 98.5 98.3 97.3 95.6 94.7 93.4 92.3 92.3
U 92.1 92.0 93.2 93.8 94.3 96.8 97.8 98.4 98.6
P 13.2 16.2 20.4 26.7 42.9 107.1* -169.1* -2.0 5.0
S 2.5 4.3 6.6 10.8 35.4 -34.1 -14.4 -0.8 2.3
P -4.0 -1.4 2.9 5.8 9.1 12.3 16.4 19.4 20.8
S -1.5 -0.6 1.1 2.5 3.6 5.1 7.1 11.5 14.0
P 0.9 3.6 6.4 7.9 10.1 12.3 14.8 14.7 15.4
S 1.0 1.9 2.7 3.5 3.7 4.3 5.2 7.0 7.8
P 4 2 2 2 2 1 15 11 7
S 9 9 7 4 3 12 12 11 8
P 14 13 8 6 3 3 3 3 2
S 11 10 9 9 8 7 5 4 3
P 9 8 6 4 3 3 3 3 3
S 10 10 9 9 8 7 8 7 7Co

nt
rib

ut
io

n 
Ra

nk Shear

Transverse

Resultant

Length (% of 
Maximum)

EMG  (% of 
Maximum)

%
 Δ

 F
or

ce

Shear

Transverse

Resultant

Forearm Angle MaxP 75P 50P 25P Neutral 25S 50S 75S MaxS
P 31.4 38.4 33.7 40.4 42.1 47.1 41.4 49.2 45.1
S 48.6 49.2 47.9 54.0 54.3 50.2 51.5 45.7 47.5

Length (% of 
Maximum)

82.3 86.7 91.6 95.6 96.2 94.9 89.0 81.8 81.8

P 28* 24.3* 15.4 9.9 -12.0 -96.3* 243.5* 55.5* 52*
S 32.6* 30.8* 26.2* 18.4 -43.8 117.1 83.6* 65.7* 74.1*
P 17.2 20.0 18.0 21.6 22.3 25.8 22.2 21.8 19.0
S 38.8* 39.6* 38* 43* 38.5* 40.8* 38.7* 37.3* 38.9*
P 20.3 21.3 17.4 20.2 20.7 24.1 21.7 25.6 25.2
S 34.7* 34.8* 34.2* 39* 36.7* 39.5* 38.8* 41.5* 45.2*
P 1 1 3 4 14 15 1 1 1
S 1 1 1 3 14 2 1 1 1
P 2 2 2 2 2 2 2 2 3
S 1 1 1 1 1 1 1 1 1
P 2 2 2 2 2 2 2 2 2
S 1 1 1 1 1 1 1 1 1Co

nt
rib

ut
io

n 
Ra

nk Shear

Transverse

Resultant

EMG  (% of 
Maximum)

%
 Δ

 F
or

ce
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Transverse

Resultant
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APPENDIX D: INDIVIDUAL MUSCLE PLOTS 

 

 

 

 

 Figure D.1.  Mean Abductor Pollicis Longus Plots 
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Figure D.2.  Mean Biceps Brachii Plots 
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Figure D.3.  Mean Brachialis Plots 
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Figure D.4.  Mean Brachioradialis Plots 
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Figure D.5.  Mean Extensor Carpi Radialis Brevis Plots 
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Figure D.6.  Mean Extensor Carpi Radialis Longus Plots 
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Figure D.7.  Mean Extensor Carpi Ulnaris Plots 
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Figure D.8.  Mean Extensor Indicis Plots 
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Figure D.9.  Mean Extensor Pollicis Longus Plots 
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Figure D.10.  Mean Flexor Carpi Radialis Plots 
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Figure D.11.  Mean Flexor Carpi Ulnaris Plots 

0

20

40

60

80

100

MaxP 75P 50P 25P N 25S 50S 75S MaxS

%
 o

f M
ax

im
um

Angle of Forearm Rotation

FCU EMG Activity and Muscle Length

Pronation EMG Supination EMG Muscle Length

0

20

40

60

80

100

120

MaxP 75P 50P 25P N 25S 50S 75S MaxS

Fo
rc

e 
(N

)

Angle of Forearm Rotation

FCU Shear Force Comparison

In-Tact Pronation 
In-Tact Supination
FCU Removed Pronation
FCU Removed Supination

0

50

100

150

200

MaxP 75P 50P 25P N 25S 50S 75S MaxS

Fo
rc

e 
(N

)

Angle of Forearm Rotation

FCU Transverse Force Comparison

In-Tact Pronation 
In-Tact Supination
FCU Removed Pronation
FCU Removed Supination

0

50

100

150

200

250

MaxP 75P 50P 25P N 25S 50S 75S MaxS

Fo
rc

e 
(N

)

Angle of Forearm Rotation

FCU Resultant Force Comparison

In-Tact Pronation 
In-Tact Supination
FCU Removed Pronation
FCU Removed Supination



108 
 

 

 

 

 
 Figure D.12.  Mean Palmaris Longus Plots 
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 Figure D.13.  Mean Pronator Quadratus Plots 
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 Figure D.14.  Mean Pronator Teres Plots 
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Figure D.15.  Mean Supinator Plots 
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APPENDIX E: CUMULATIVE MUSCLE FORCE CONTRIBUTIONS 

 

The muscles providing a negative force are on the left side of the plot while the positive 

forces are on the right side of the plot.  The positive and negative forces are separately 

ranked from the largest magnitude to smallest magnitude.  The force provided by each 

muscle is added to the sum of the muscle forces in the bar before it.  The horizontal blue 

line indicates 75% of the combined positive force of all muscles while the horizontal red 

line indicates 75% of the combined negative force of all the muscles.  The total positive 

force is usually greater than 100% because the positive and negative forces combine to 

make the overall 100% force.  Therefore the lines do not occur at  75% of the total force, 

but 75% of the total positive and total negative force.  Green bars indicate that the 

muscle contributes to reaching the 75% mark.  Red and blue bars indicate that a muscle 

provides negative force and positive force, respectively,  but do not contribute to 

reaching 75% of the force.  In order to rank the muscles, the total number of times that 

a muscle contributed to reaching 75% of the force (green bars) as well as in individual 

categories were counted .   
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Figure E.1. Shear Force Contributions during Pronation at MaxP  

 

 
Figure E.2. Shear Force Contributions during Pronation at 75P  
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Figure E.3. Shear Force Contributions during Pronation at 50P  

 
Figure E.4. Shear Force Contributions during Pronation at 25P  
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Figure E.5. Shear Force Contributions during Pronation at Neutral 

  
Figure E.6. Shear Force Contributions during Pronation at 25S 
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Figure E.7. Shear Force Contributions during Pronation at 50S 

 
Figure E.8. Shear Force Contributions during Pronation at 75S 
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Figure E.9. Shear Force Contributions during Pronation at MaxS 

 
Figure E.10. Transverse Force Contributions during Pronation at MaxP 
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Figure E.11. Transverse Force Contributions during Pronation at 75P 

 
Figure E.12. Transverse Force Contributions during Pronation at 50P 
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Figure E.13. Transverse Force Contributions during Pronation at 25P 

 
Figure E.14. Transverse Force Contributions during Pronation at Neutral 
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Figure E.15. Transverse Force Contributions during Pronation at 25S 

 
Figure E.16. Transverse Force Contributions during Pronation at 50S 
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Figure E.17. Transverse Force Contributions during Pronation at 75S 

 
Figure E.18. Transverse Force Contributions during Pronation at MaxS 
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Figure E.19. Shear Force Contributions during Supination at MaxP 

 
Figure E.20. Shear Force Contributions during Supination at 75P 
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Figure E.21. Shear Force Contributions during Supination at 50P 

 
Figure E.22. Shear Force Contributions during Supination at 25P 
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Figure E.23. Shear Force Contributions during Supination at Neutral 

 
Figure E.24. Shear Force Contributions during Supination at 25S 
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Figure E.25. Shear Force Contributions during Supination at 50S 

 
Figure E.26. Shear Force Contributions during Supination at 75S 
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Figure E.27. Shear Force Contributions during Supination at MaxS 

 
Figure E.28. Transverse Force Contributions during Supination at MaxP 
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Figure E.29. Transverse Force Contributions during Supination at 75P 

 
Figure E.30. Transverse Force Contributions during Supination at 50P 
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Figure E.31. Transverse Force Contributions during Supination at 25P 

 
Figure E.32. Transverse Force Contributions during Supination at Neutral 
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Figure E.33. Transverse Force Contributions during Supination at 25S 

 
Figure E.34. Transverse Force Contributions during Supination at 50S 
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Figure E.35. Transverse Force Contributions during Supination at 75S 

 

Figure E.36. Transverse Force Contributions during Supination at MaxS 
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